The first Passivhaus Archive in the UK HARC Hereford

Presented at:

The 20th International Passivhaus Conference Darmstadt AECB Annual Conference Norwich July 2016

Nick Grant

Alan Clarke

Elemental Solutions

@ecominimalnick

@AR_Clarke

Image Nick Grant

Many considerations:

Security

Fire

Logistics

Quarantine

Daylight

Public access, attractive

Multifunction

Future expansion etc etc etc...

I will just consider temperature and RH!

Repository: Photo store: 13-20° C 12° C

35-60% RH 30% RH

Easily isolated zones

Repository energy balance

- Simplest form
- Low IHGs 0.6W/m²
- c.a. 1 air change/day supply air vent
- No HRV
- Temp 13-20° C
- No cooling (except photo store)
- Inspired by Tim Padfield & Danish archives

www.conservationphysics.org

Moisture balance - monthly model

Annual average humidity is about right +/- depending on English weather.

Options:

- 1. Close control air conditioning
- 2. Passive buffering
- 3. Control vent on phychrometrics
- 4. Trim supply air humidity in summer $(100m^3/h, < 10-15 \text{ litres } H_2O/\text{day})$

Buffering (roughly)

Max vent air H_20 imbalance: $\approx +/-10 \text{ kg/day}$

EMC @ 40% RH $\approx 6.5\%$

EMC @ 60% RH ≈ 8%

= 13 %RH/% EMC change

c.a. 150,000* kg of paper etc.

 $10 \text{kg H}_2 0 \times 30 \text{ days} = 0.2\% \text{ change in EMC}$

= 2.6% change in RH

(* Half of archivist's estimate and ignoring building fabric moisture capacity)

How long to dry 1,800 t of concrete??

They said it wouldn't work:

Sceptical client in design meeting:

"The Titanic was said to be unsinkable"

Alan Clarke's reply:

"We are designing the iceberg"

Compromise: an iceberg with a BMS controlled heating system . . .

Titanic Versus Iceberg

4 sensors/store, alarms, duplex boilers, duplex pumps etc. . .

An airtight concrete box wrapped in old newspaper. . .

Troubleshooting 1

Unwanted hot water running through repository pipework.

Losses from insulated pipe was enough to heat the building!

- Fix - valves shut manually

(Large fan coils to meet 1kW peak heat load/floor!)

Troubleshooting 2

Photostore dehumidifier installed backwards so running inefficiently and generating unwanted heat in the service core. Fixed in June 2015

Troubleshooting 3

Faulty sensor wiring made the heating come on when already above set-point.

A year to fix but heating isolated so not a problem for now.

How fast/automatic does heating response need to be?

Hereford Archive first floor repository store to April 1st 2016

391944 Temperature Middle Floor right391944 Humidity Middle Floor right

March 2016, vent reduction experiment

"Sometimes I think it will drive me mad."

Very even conditions

Original M&E consultants argued for circulating fans, standard practice to avoid "cold spots".

Would have required cooling for the fan gains.

Ground floor	17.00°	C	50% RH
First floor	17.86°	С	46% RH
Top floor	17.87°	С	49% RH

Supply air Dehumidification

(if needed)

- Ventilation is the main source of H₂O
- So make building as tight as possible
- Supply c.a. 1 air-change per day
- Trim supply air when outside air humidity is 'high'
- Don't try and control on room RH.

DX coil for seasonal What we imagined dehumidification - on/off control Uninsulated duct Uninsulated duct Filter Small fan 100 - 150m³/h 1.2 air changes/day (c.a. 30W)

What we got

Now we know it works we can just use the cooling coil. (but because it uses chilled water we need to protect from frost somehow)

Energy use – inc' labs & offices

TFA:

Records Centre 1321m²
Repository 1130m²
Total 2451m²

June 2014 – March 2016 - whole building

Gas **11kWh/(m².a)** c.a. £1,000/a

Electricity **34kWh/(m².a)** c.a. £11,000/a

PE $\approx 100 \text{ kWh/(m}^2.a)$

Hopefully electricity use will decrease as building dries out and lighting and other controls are sorted??

Lessons

Reducing ventilation, heat, cooling and dehumidification load to a very low level allows radically simplified control strategies – a gentle nudge.

Supply air dehumidification @ about 2 air changes/day successfully stabilised RH before the building was fully dry.

Simple is really hard to get built!

Open Energy Monitor remote access by Alan Clarke

Open Energy Monitor remote access by Alan Clarke

Next time

- No BMS save money and improve reliability
- Simpler dehumidification of air supply
- No frost coil (uninsulated ducts, turn fan off in extreme)
- Apply lessons learnt to the cooled photo-store
- Simpler heating electric panel heaters?

