

Building for a Sustainable Future Policy | Research | Practice

Oxford Brookes University | 11-12 June 2009

Optional tours of local renovations: 13 June 2009

Organised by:

Academic Partner:

Principal Sponsor:

Student Bursary Sponsor:

ELEMENTAL SOLUTIONS DESIGN FOR SUSTAINABLE WATER MANAGEMENT

an eco-minimal approach to water

AECB, Oxford 2009
Nick Grant
www.elementalsolutions.co.uk

Domestic water and energy/CO₂ overview

"Science is the belief in the ignorance of experts"

Richard Feynman

Carbon emissions; Don't blame the water company, it's all your fault...

Environment Agency, 2008

Water use litres Existing housing, 2.4 person occupancy

EST 2009; Clarke, Grant and Thornton

www.elementalsolutions.co.uk

Main life cycle impact of a WC?

- . Manufacture?
- Transport from China?
- Delivery transport within the UK?
- . Water and sewage treatment?
- Toilet duck and loo blue?
- Final disposal?
- Anything else?

About 50:50 heat loss from building and water supply and sewage.

Thermal gains - 5°C drop assumed

In more detail:

- Existing household
- occupancy 2.4
- gas system boiler (78% efficient).
- Figures in kg CO₂ equivalent/year

Total 959kg

EST 2009; Clarke, Grant and Thornton

At what point does water heating CO₂ become higher than space heating CO₂?

Interaction of DHW system losses and space heating

Challenging some Clichés

Key criteria

- Effectiveness
- Whole life cycle impact
- Consider user behaviour
- Cost effectiveness
 - An eco-minimalist can do for a penny what any fool can do for a pound. (OK for 10p)

Cost effectiveness for UK PLC; Beyond payback period

Comparison of Water Measures

www.elementalsolutions.co.uk

$$AIC = \frac{C - S}{10.W}$$

AIC is Average Incremental Cost C = discounted present sum of option cost (£)

S = discounted present sum of opex saving (£)

W = discounted present sum of water saved (megalitres)

All calculated over time horizon (e.g. 30 years)

Result in pence/m³

Note

Data and assumptions for a specific project, 100 dwelling development in SE.

Effectiveness;

Domestic rainwater as encouraged by CSH:

Assumptions:

20m²/person roof area (35m²/person floor)

(80m² semi, thick walls, 2.3 people)

60% collection and use efficiency

Litres/person = 20m² X 0.6 X annual rain (mm)/365 days

Effectiveness

www.elementalsolutions.co.uk

Effectiveness:Don't mix your eco-cliches:

Green roof + rainwater reuse at BRE Innovation Park

"But you can't put a price on the planet!"

"What about all the chemicals, CO₂ and other environmental impacts of mains water?"

Life cycle impact; Non-domestic rainwater system

Thornton (2008). Rainwater harvesting systems; are they a green solution to water shortages? Green Building Magazine, Spring 2008, p40-43.

The last defence of eco bling;

"Ah but it's not just about performance, cost effectiveness, reliability, low maintenance and life cycle impacts! What about the educational value? We should definitely use these technologies on schools."

A genuine but compound quote

Cost effectiveness

Global cost curve of GHG abatement opportunities beyond business as usual

Water related CO₂ reduction:

Behaviour & uncertainty

Same 12 litre per minute shower head - 3 different users

Person	Specified flow	Chosen flow	Duration	Showers/ week	m³/year
A	12 l/minute	12	7 mins	7	30.6
В	12 l/minute	7	4 mins	4	5.8
С	12 l/minute	12	15 mins	14	131

23:1 ratio for same shower fitting without considering extreme behaviour

'Essentially, all models are wrong, but some are useful' George Box

Design for behaviour; urinal spacing and dividers.

FOR HOT WATER PLEASE RUN THE TAP FOR A MINUTE OR TWO

www.elementalsolutions.co.uk

AECB Water Standard www.aecb.net

Dead Legs

AECB Good Practice

≤ 1.5 litre, all pipes insulated.(≤ 0.5 litre with secondary circulation - controlled)

AECB Best Practice

≤ 0.85 litre.(≤ 0.25 litre with secondary circulation - controlled)

"Things should be as simple as possible – but no simpler"

Albert Einstein

As simple as possible:

Radial plumbing with short small-bore pipes.

14m of 10mm PEX pipe = 0.5 litre (2 cups) dead leg 14m of 15mm PEX = 1.5 litres

Avoids cost, complexity and heat loss of secondary circulation (or trace heating) but requires compact layout and good water pressure.

- but no simpler:

Structured plumbing ® for larger properties.

1-2 cups draw off before hot, minimal energy loss.

4 litre leak free WCs

Green Building Store

The non-eco-minimal bits:

One too hot, one cold!

Trace heating, 2 immersion heaters and solar panels feeding 3 spray taps!

Has never worked and used much more electricity than under basin electric heaters.

www.elementalsolutions.co.uk

Eco-minimal sewage treatment (briefly)

Example;

- New rural school for 320 kids
- Heavy clay soil
- Lots of space
- . Small stream
- No capacity in village STP plus long distance

Conventional approach;

- Clay soil so soakaway assumed not suitable
- 320 kids x standard figure of 90 l/d = 29m³/d
 - = High volume wrt small stream so strict consent from EA.
- Therefore solution is large high spec' powered treatment plant to meet very tight discharge consent, cost c.a. £300,000 plus ongoing maintenance and high energy consumption.

Eco-minimal approach;

- Challenge assumptions:
 - How much water do schools use? Data for 11,000 schools suggests about 15 litres/pupil.day.
 - $_{\circ}$ 320 kids x 15 l/d = 4.8m³/d (6 times less)
- Lower volume means less strict consent and smaller less expensive plant, perhaps £40,000 - but we can do better!

A tenth of the cost of original proposal plus zero energy and minimal maintenance.

www.elementalsolutions.co.uk

Rules of thumb

- . Keep it as simple as possible but not too simple
- Efficiency first; reduce, reduce, reduce
- Impact in use is typically 90%+ of life cycle impact
- Sustainable can be cost-negative if designed in rather than added on
- Look for big savings first not incremental improvements
- Don't forget behaviour, sometimes perverse.

"Making the simple complicated is commonplace; making the complicated simple, awesomely simple, that's creativity"

Charles Mingus.

More information

www.elementalsolutions.co.uk

For links to:

www.aecb.net - the AECB Water Standards

www.usablebuildings.co.uk

www.environment-agency.gov.uk/savewater