

Gary Newman (Chief Executive ASBP)

Why products matter

- Background to the ASBP
 - Who we are / mission / aspiration
- Why products matter
 - Embodied impact / resource efficiency
- Sequestered Carbon Kate de Selincourt
- ASBP Themes
 - Greenwash and the role of standards (The Green Guide / EPD / Natureplus)
 - Traditional products and skills
 - Retrofit and the green deal
 - Embodied impact and resource use
 - The build process
 - Sustainable Design and Procurement
- Conclusions / Q&A

Background to ASBP

- Initially began sharing ideas in 2008 in response to the Green Guide to Specification
- > Operated as Renewable Building (supported by the NNFCC)
- No existing construction organisation was addressing the issue
 - too difficult
 - product agenda seen as luddite or anti-science
 - not significant sustainability opportunity or not a priority
 - substantial commercial interest in NOT pursuing the sustainable products agenda
- Established Alliance for Sustainable Building Products (ASBP) in November 2011

ASBP Founders / Partners

ASBP Standard Members

BUILDING SYSTEMS

AS	BP The Allic for Suster Building					Search the site	Q
TTO	Building	Products					
HOME	ABOUT US	OUR ACTIVITIES	MEMBERS	RESOURCES	PROJEC TS	NEWS & EVENTS	CONTACT US

The Alliance for Sustainable Building Products

The ASBP is a cross sector, not for profit organisation, comprising, building product manufacturers and distributors, specifiers, designers, contractors, public interest and sustainability organisations, academics and other building practitioners.

We are committed to accelerating the transition to a high performance, healthy and low carbon built environment by championing the increased understanding and use of building products that meet demonstrably high standards of sustainability.

LATEST NEWS

🗎 15 November 2011

Industry welcomes new product sustainability group

A number of leading figures from the building and sustainability field have welcomed the formation of The ASBP. Read More >

UPCOMING EVENTS

🗎 16 November 2011

ASBP Launch

The official Launch of the Alliance for Sustainable Building Products will be taking place in the Grand Committee Roo...

Read More >

Governance of the ASBP

Alliance not a trade association

- We represent the interest of 'sustainability' and money does not buy influence
- Not for profit, for public good organisation (company limited by guarantee)
- Based on membership subscription
- No membership criteria (other than a charter) but strict rules on how members can use the organisation to promote a product or service
- Current Board Joe Wild (Burdens), Mark Lynn (Thermafleece), Neil May (NBT), Graham Hilton (Ecobond), Gary Newman (Plant Fibre Technology)
- Directors elected by members (3 year terms)
- No shareholders income used to fund activities (research, policy, standards, education)

ASBP Mission

Champion the understanding and use of building products that meet demonstrably high standards of sustainability to accelerate the transformation to a high performance, healthy and low carbon built environment

Key aspiration

Market transformation

to ensure that:

- The 'sustainable products agenda' is fully integrated with the energy and design agendas.
- There is a step change in the understanding, identification, specification and use of sector leading sustainable building products.

Some other aspirations.....

- We want product manufacturers to break ranks
- We want to integrate the supply chain into decision making (and tools such as BIM)
- We want artisan approaches to become mainstream
- We want greater use of sustainability standards and labels
- We want to broaden the definition of sustainability beyond carbon to include resource efficiency, as well as social, health and ethical considerations
- We want the public sector to correct the procurement missed opportunity
- We want to rethink the build process to ensure that more sustainable products are identified, specified and used
- We want to move the understanding of value beyond that of upfront cost
- So we're not asking for much.....

Why are products important?

➢In a finite world all resources are finite

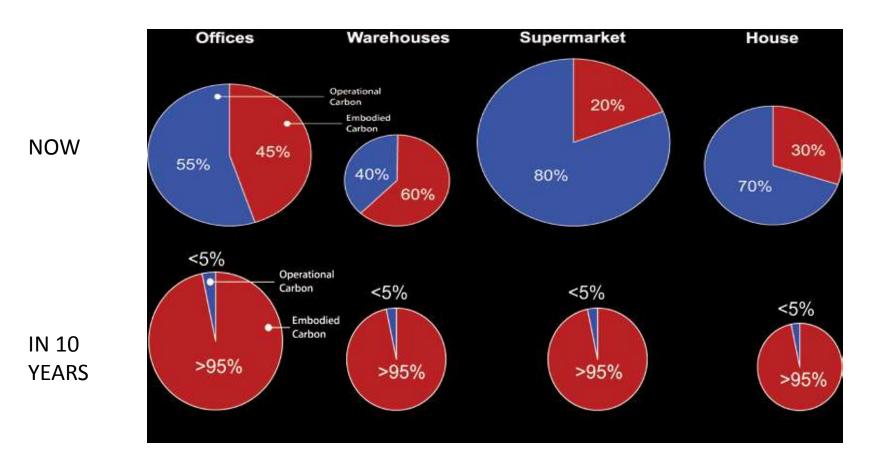
Construction industry accounts for 90% of all non-fuel mineral use, 50% of non-fuel timber

Substantial economic, environmental, social and ethical issues associated with product supply chains

➤Toxic chemicals and processes damage the environment

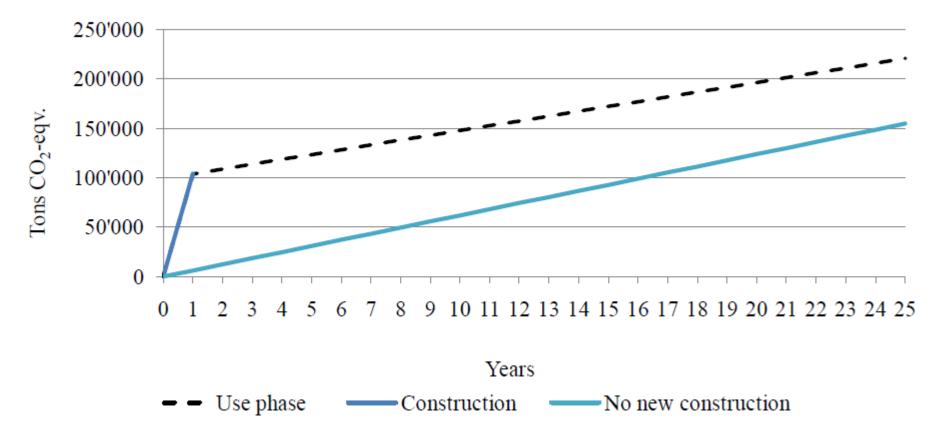
➤VOCs are harmful to human health

➤Waste to landfill is not sustainable


Construction accounts for 3 times that of domestic waste and 21% of UK hazardous waste

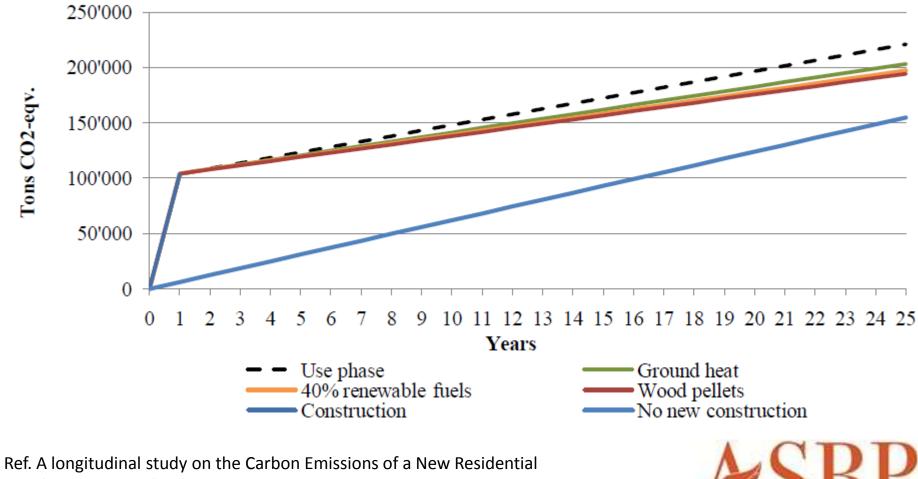
Products with low durability and high maintenance have higher impact (crap products are not sustainable)

Climate change (carbon) impact of construction products is highly significant


Operational and embodied carbon

The Carbon Spike

Figure 3. Total emissions of the residential area during the 25 year life cycle.



Ref. A longitudinal study on the Carbon Emissions of a New Residential Development in Finland Jukka Heinonen

The Carbon Spike

Figure 5. The life cycle emissions of the residential area with the different heating options.

Ref. A longitudinal study on the Carbon Emissions of a New Reside Development in Finland Jukka Heinonen Kate de Selincourt

Sequestered carbon:

Biomass is made up of 50% non-fossil carbon (removed from the atmosphere)

Biomass contains energy of 10-20 MJ/kg

IPCC provide methodology for accounting for carbon in harvested wood products

ASBP research shows that the increase in the sequestered carbon pool is highly significant

Sequestered carbon – some numbers:

 \geq Wood use in construction equivalent to 2% of annual green house gas emissions (9-14 million tonnes CO₂e)

➢Which is 2-3 times the impact of zero-carbon homes policy to 2025

➢ By 2020 sequestered carbon in construction products could account for 90% of the Department of Energy and Climate Change (DECC's) carbon reduction target from homes and communities

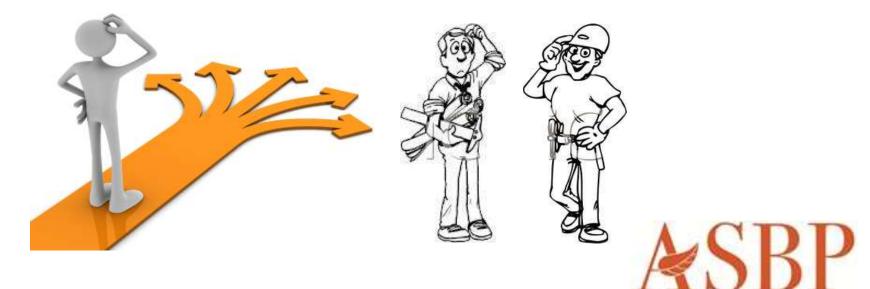
So what does this mean:

>Why isn't this reality reflected in policy?

➤What are the implications for UK forestry and products based on biomass?

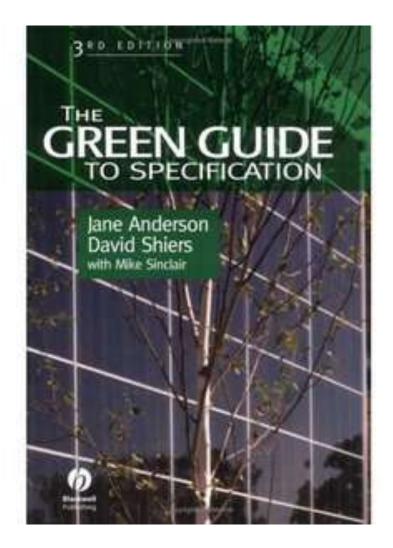
Should we design buildings as carbon sinks?

> Would such an approach be resource efficient?

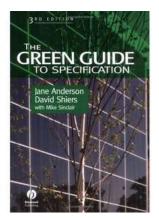

ASBP Themes

- Greenwash and the role of standards (The Green Guide / EPD / Natureplus)
- Traditional products and skills
- Retrofit and the green deal
- Embodied impact and resource use
- The build process
- Sustainable Design and Procurement

Selecting building products



Selecting building products – suppliers info



W VOC emissions

'It's not perfect but its a start'

'It's useful' (WILFUL IGNORANCE!!)

'This is so misleading I have had it removed from our library'

'The Green Guide is a state sponsored, monopolistic bottleneck'

The Green Guide to Specification

 \succ Lack of choice \succ Lack of transparency ➤Generic approach \succ LCA methodology – cradle to grave LCA methodology – peer review ➢Green Guide rating – based on elements not products / functional unit does not reflect multi-functionality / embodied impact v. in use / calculating A+ to E rating LCA methodology - sequestered carbon

<u>UPVC windows</u> Non-renewable base material Large Manufacturer Spent a lot of money on assessment assessment Energy rating of A Green Guide A+ Lifespan of 25 years+


<u>Handmade Oak Windows</u> Locally sourced Timber SME – Craftsman business Uses generic

Energy Rating B Green Guide C Will last a lifetime

But things are afoot in Europe.....

Construction Products Regulations (July 2013) CEN TC350 Environmental Product Declarations (EPD) EN 15804 (Product Category Rules)

EPD Example (France)

Mur en maçonnerie de blocs en béton.

Fiche descriptive | Unité fonctionnelle | Indicateurs environnementaux | Documents & Images

Unité fonctionnelle simplifiée

 $1\ m^2$ de mur en blocs béton de 20 cm d'épaisseur incluant produits complémentaires et emballages (durée de vie typique de 100 ans)

Impact environnemental	Valeur total cycle de vie/UF par annuité	Valeur total cycle de vie/UF pour toute la DVT	Unité
Consommation de ressources énergétiques - énergie primaire totale	1,642	164,2	CM
Consommation de ressources énergétiques - énergie renouvelable	0,16	16	Ш
Consommation de ressources énergétiques - énergie non renouvelable	1,48	148	CM
Consommation de ressources non énergétiques	2,55	255	kg
Consommation d'eau	0,8	80	L
Déchets solides valorisés	0,006	0,6	kg
Déchets dangereux éliminés	0,0003	0,03	kg
Déchets non dangereux éliminés	0,008	0,8	kg
Déchets inertes éliminés	2,32	232	kg
Déchets radioactifs éliminés	0,0000133	0,00133	kg
Changement climatique	0,183	18,3	kg équivalent CO2
Acidification atmosphérique	0,000671	0,0671	kg équivalent SO2
Pollution de l'air	13,7	1370	m3
Pollution de l'eau	0,194	19,4	m3
Pollution des sols		Néant	
Formation d'ozone photochimique	0,0000616	0,00616	kg équivalent éthylène
Modification de la biodiversité		Néant	

EPD Examples (UK)

Uticat/	on Approved	Environn	iental Profile				
2	(e		°				
ບັ	Characterised and I	Normalised Data for:					
we a	i square metre of	of Installed Floor finish: Soft floor coverings: Burmate: I carpet tiles - (Infinity, Synergy, Proteus, Mission, Barrier)					
	ertified Material (Data for other constitu	ent materials ar	e available from BRE)				
Start Date End Date	1 January 2005 31 December 2005						
Source of Data	Company Records						
Geography	UK						
Representativeness	1 site representing 100% of Burm Proteus, Mission, Origin/oratorio,		ufted carpet tiles - (Infinity, Synergy,				
LCA Methodology	BRE Environmental Profiles Meth	odology					
Allocation	100% to product						
Date of Data Entry Boundary	18 July 2006 Cradle to Installation on Site						
Comments	Cradie to installation on Site						
Issue	Cha	racterised Dat	fa 11-3				
Climate Change	Cha	12	kg CO2 eq. (100yr)				
Acid Deposition		0.091	kg SO2 eq.				
Ozone Depletion		0.00000057	kg CFC11 eq.				
Pollution to Air: Hun	an Toxicity	0.067	kg tox.				
	tochemical Ozone Creation Potential	0.0018	kg ethene eq.				
Pollution to Water: H		0.000029	kg tox.				
Pollution to Water: E		80	m ^a tox.				
Pollution to Water: E		80	kg PO4 eq.				
Fossil Fuel Depletion		0.0039	toe				
Minerals Extraction	1	0.0039	tonnes				
Water Extraction		510	litres				
Waste Disposal		0.00061	tonnes				
	& Congestion: Freight		tonnes tonne.km				
		2.6					
Issue	NO	malised Data	UK Citizen's Impacts				
Climate Change		0.00096	12300 kg CO2 eq. (100yr)				
Acid Deposition		0.0015	58.9 kg SO2 eq.				
Ozone Depletion		0.000002	0.286 kg CFC11 eq.				
Pollution to Air: Hum		0.00073	90.7 kg tox.				
	tochemical Ozone Creation Potential	0.000056	32.2 kg ethene eq.				
Pollution to Water: H	,	0.0024	0.0117 kg tox.				
Pollution to Water: E	-	0.00045	178000 m³ tox.				
Pollution to Water: E	•	0.00073	8.01 kg PO4 eq.				
Fossil Fuel Depletion	1	0.00097	4.09 toe				
Minerals Extraction		0.00062	5.04 tonnes				
Water Extraction		0.0012	418000 litres				
Waste Disposal		0.000085	7.19 tonnes				
Transport Pollution 8	& Congestion: Freight	0.00064	4140 tonne.km				
Primary Energy		0.21	GJ				
BRE Ecopoints Sco	re	0.082	Ecopoints				
BRE Certification I	f Valid From 15/D8/06 BRE Certification:	Fax 01923 664603 <u>w</u> issued subject to terr	Seedel ww.breastification.co.uk ms and conditions m.				

EPD Example (Germany)

O militine	Multiplex-top			Thermosafe			Gutex,	
Auswertegröße	Einheit pro m ^a	Gesamt	Produk- tion	End of Life	Gesamt	Produk- tion	End of Life	juli 2011 PEInternatior
Primärenergie, nicht erneuerbar	[MJ]	-3449,5	3921,0	-7370,5	-2670,5	1495,5	-4165,9	
Primärenergie, erneuerbar	[MJ]	4007,8	4342,5	-334,7	2322,3	2511,4	-189,2	
Treibhauspotential (GWP 100)	[kg CO ₂ -Ăqv.]	-2,2E+02	-1,8E+02	-4,2E+01	-1,5E+02	-1,3E+02	-2,4E+01	-
Ozonabbaupotential (ODP)	[kg R11-Ăqv.]	-7,2E-05	3,8E-06	-7,5E-05	-4,2E-05	1,3E-07	-4,3E-05	-
Versauerungspotential (AP)	[kg SO ₂ -Ăqv.]	-2,0E-01	2,4E-01	-4,5E-01	-1,5E-01	1,1E-01	-2,6E-01	-
Überdüngungspotential (EP)	[kg PO ₄ ³⁻ -Äqv.]	5,6E-02	3,8E-02	1,8E-02	2,9E-02	2,0E-02	8,7E-03	-
Sommersmogpotential (POCP)	[kg C ₂ H ₄ -Ăqv.]	5,3E-02	6,3E-02	-1,1E-02	1,1E-02	1,8E-02	-6,4E-03	

onal

Pavatex Holzfaserdämmstoff Pavaflex										
Auswertgröße	Einheit pro m ^a	Produktion	End of Life							
Primärenergie, nicht erneuerbar	[MJ]	918	-915							
Primärenergie, erneuerbar	[MJ]	980	-10							
Treibhauspotenzial (GWP 100 Jahre)	[kg CO ₂ -Äqv.]	-15,9	16,8							
Ozonabbaupotenzial (ODP)	[kg R11-Äqv.]	1,03E-06	-2,13E-06							
Versauerungspotenzial (AP)	[kg SO ₂ -Äqv.]	1,55E-01	-2,50E-02							
Eutrophierungspotenzial (EP)	[kg PO ₄ -Äqv.]	1,71E-02	-4,07E-03							
Photochem. Oxidantienbildungspotenzial (POCP)	[kg C ₂ H ₄ -Äqv.]	1,42E-02	-4,02E-03							

Pavatex, december 2011 PEInternational

EPD Example (Germany)

Glaswolle-Platten und -Filze (Rohstoffe u. Herstellung)						
Auswertegröße	Einheit pro kg	Glaswolle (unkaschiert)	de PE			
Primärenergie, nicht erneuerbar	[MJ]	28,76	1			
Primärenergie, erneuerbar	[MJ]	1,34				
Treibhauspotenzial (GWP 100 Jahre)	[kg CO ₂ -Äqv.]	1,77]			
Ozonabbaupotenzial (ODP)	[kg R11-Äqv.]	88,6 ⁻ 10 ⁻⁹				
Versauerungspotenzial(AP)	[kg SO ₂ -Äqv.]	0,0067				
Eutrophierungspotenzial (EP)	[kg Phosphat-Äqv.]	0,0011				
Sommersmogpotenzial (POCP)	[kg Ethen-Äqv.]	0,00034				

Saint-Gobain Isover december 2011 PEInternational

Mineralwolle - Dämmstoffe mit ECOSE Technology für Dach, Decken und Zwischensparren									
	TI 14	40 U	TI 1	35 U	TI 132 U				
Auswertegröße in Einheit pro m³	Produktion	End of life	Produktion	End of life	Produktion	End of life			
Primärenergie, nicht emeuerbar [MJ]	348,87	3,84	474,63	5,22	787,73	8,61			
Primärenergie, emeuerbar [MJ]	44,14	0,17	58,17	0,23	99,42	0,39			
Abiotische Ressourcenverbrauch (Elemente) [kg Sb-Äqv.]	2,05E-03	1,52E-06	2,79E-03	2,07E-06	4,60E-03	3,41E-06			
Treibhauspotential [kg CO ₂ -Äqv.]	20,13	1,73	27,26	2,35	45,40	3,88			
Ozonabbaupotential [kg R11-Äqv.]	1,95E-06	4,75E-09	2,70E-06	6,45E-09	4,43E-06	1,06E-08			
Versauerungspotential [kg SO ₂ -Äqv.]	0,24	1,91E-03	0,33	2,60E-03	0,54	4,29E-03			
Eutrophierungspotential [kg PO ₄ ³⁻ -Äqv.]	1,57E-02	3,78E-03	2,15E-02	5,14E-03	3,55E-02	8,47E-03			
Photochemisches Ozonbildungspotential [kg C ₂ H ₄ -Äqv.]	1,21E-02	5,25E-04	1,63E-02	7,14E-04	2,70E-02	1,18E-03			

Knauf, february 2011 PEInternational

EPD Examples (Germany)

EPS-Hartschaum für Wände und Dächer (Herstellung + End of Life)							
Auswertegröße in Einheit pro m ³ W/D-035 W/D-040							
Primärenergie, nicht erneuerbar [MJ]	1145,2	868,0					
Primärenergie, erneuerbar [MJ]	1,0	1,7					
Abiotischer Ressourcenverbrauch [kg Sb-Äqv.]	5,5E-01	4,2E-01					
Treibhauspotenzial (GWP) [kg CO ₂ -Äqv.]	8,9E+01	6,7E+01					
Ozonabbaupotenzial (ODP) [kg R11-Äqv.]	-1,8E-07	2,8E-08					
Versauerungspotenzial (AP) [kg SO ₂ -Äqv.]	8,9E-02	6,7E-02					
Eutrophierungspotenzial (EP) [kg PO₄³-Äqv.]	9,4E-03	7,1E-03					
Sommersmogpotenzial (POCP) [kg C ₂ H ₄ -Äqv.]	3,5E-01	3,0E-01					

Styropor, december 2009 PEInternational

FOAMGLAS [®] -Platten und –Elemente (Rohstoffe u. Herstellung)										
Ergebnisse: W+F (100 kg/m ³) und Perinsul High Grade (200 kg/m ³)	Einheit	W+F pro m³	Perinsul HG pro m³	W+F pro kg	Perinsul HG pro kg	W+F R=2m ² K/W pro m ²	Perinsul HG R=2m²K/W pro m²			
PE, nicht erneuerbar	[MJ]	1525,9	3049,22	15,26	15,25	115,97	335,41			
PE, erneuerbar	[MJ]	920,6	1725,24	9,21	8,63	69,97	189,78			
PE, nicht erneuerbar	[kWh]	423,9	847,0	4,24	4,24	32,21	93,17			
PE, erneuerbar	[kWh]	255,7	479,2	2,56	2,40	19,43	52,72			
Treibhauspotenzial (GWP)	[kg CO2-Äqv.]	109,23	212,22	1,09	1,06	8,30	23,34			
Ozonabbaupotenzial (ODP)	[kg R11- Äqv.]	0,74 · 10 ⁻⁶	1,72 ·10 ⁻⁶	7,40 ·10 ⁻⁹	8,60 ·10 ⁻⁹	56,2 ·10 ⁻⁹	0,19 ⋅10 5			
Versauerungspotenzial (AP)	[kg SO ₂ - Äqv.]	0,208	0,411	2,08 - 10"	2,06 - 10"3	0,016	0,045			
Eutrophierungspoten- zial (EP)	[kg PO4 ³⁻ - Äqv.]	0,023	0,046	0,23 · 10 ⁻³	0,23 · 10'3	1,75 · 10 ⁻³	5,06 · 10 ⁻³			
Sommersmog (POCP)	[kg Ethen- Äqv.]	0,019	0,036	0,19 · 10 ⁻³	0,18 · 10'3	1,44 · 10 ⁻³	3,96 · 10 ⁻³			

Pittsburgh Corning, october 2011 PEInternational

EPD help to inform product choices

EPD are

...still not comparable useless for immediate choices useless for general public (and architects / specifiers)

Europe's leading Eco-label Began 10 years ago – started by industry / WWF / FOE (Germany) ISO 14044 (Type I label) Over 200 labelled products Over 500 million Euro sales of labelled products

Active in.... Germany / Austria /Switzerland / Belgium / Holland / France / UK / Italy / Hungary / Lithuania

Aiming to meet the requirements of the Iseal code of practice to sit alongside......

The natureplus eco-label

This label indicates:

- Made from sustainable raw materials
- Sustainable end-of-life strategy
- Low impact on climate change
- Low emission production
- Examined health compatibility
- Good indoor air quality
- Proven technical performance
- Product category leading sustainability
- Based on third party testing and accreditation

Why does natureplus work.....

Rigorous, challenging and comprehensive criteria

- Arms length certification
- But above all
- GOOD GOVERNANCE

(But it should be remembered that labels are market mechanisms to aid good decision making)

Traditional Products and Skills

- Such as Earth Building Products and Systems / Straw Bale / Traditional Timber Frame and Carpentry / Lime products and skills / Stone masonry
- We don't need numbers and standards to demonstrate the sustainability of traditional approaches. Or do we?
- How do these approaches get integrated into decision making?
- The ASBP wishes to facilitate development of simple standards and certification processes
- ASBP aims to promote value in a rigorous, holistic and scientific way

Retrofit and the Green Deal

- Do we need an alternative approach to insulating existing buildings, which is more than just energy efficient insulation?
- What about health, moisture, and comfort?What about embodied impact and waste?What about process, use and lifestyle?

Embodied impact and resource efficiency

- Do we really understand embodied carbon, resource use and other environmental impacts?
- Are there bold steps we could take to radically improve the embodied impact of buildings?
- Is sequestration the new Carbon Capture?
- Can we develop new procurement clauses?

The Build Process

Can we rethink the build process to achieve more sustainable outcomes

- Self-build
- Improved procurement processes (WRAP clauses)
- Value engineering v.
 sustainable engineering
- Reduce product switching

– BIM

Sustainable design

How can designers use product information in an intelligent away at an early stage in the design process to ensure sustainable products are specified and stay in the specification?

Do we require a culture change in educating for and implementing sustainable design?

Can whole life costing, carbon calculators and ultimately a 'BIMsust' change the game for the better?

Conclusions

Buildings don't start with developers, designers or clients – they start with the product supply chain

Public sector must demand embodied impact data at design stage

- BIMsust must be open, transparent, dynamic and with independent governance
- Resist the use of generic EPD they are the enemy of progress
- Look for, ask for and specify natureplus certified products
- Use sustainability procurement clauses
- Need to back traditional/artisan approaches in a meaningful way
- The ASBP has a 'foot in the door' but needs your support, ideas an energy to succeed
- The inaugural ASBP conference is scheduled for October 2nd at the Self Build and Renovation Centre, Swindon Thanks

