Breathing and Airtight? Is this possible...

AECB 2006 Peter Warm Buildings Energy Consultant

Definitions

Infiltration

Ventilation

Air Leakage Test

Infiltration

Ventilation

Air Leakage test

Air Leakage vs. Infiltration

	Air changes	Approximate
	at 50 Pa	normal air changes
Typical UK house	15	0.75
Good UK practice	5	0.25
Scandinavian & Canadian practice	<	< 0.1

Infiltration routes

Joist Hangers

Why is airtightness desirable?

Reduction in heating energy

 Reduction in fossil fuel pollution

Fabric and Infiltration Heat Losses

Why is airtightness desirable?

Reduction in heating energy

 Reduction in fossil fuel pollution

 Buildings more comfortable

 Reduction in draughts

Why is airtightness desirable?

- Reduction in heating energy

 Reduction in fossil fuel pollution

 Buildings more comfortable

 Reduction in draughts

 But ventilation still required for good air quality
 - Some systems not worth installing in leaky houses

Ventilation systems Natural ventilation

- Trickle vents
- Opening windows
- Passive stack ventilation

Mechanical

- Extract fans
- Whole house extract
- Room ventilator with heat recovery
- Whole house mechanical ventilation with heat recovery

Windows

Poor control cannot be left open Can be left open but often cannot be reached Ventilator gives better control

Passive Stack Ventilation

Whole house extract systems

Room ventilator with heat recovery

Room ventilator with heat recovery

Whole house heat recovery ventilation

Conclusion: Airtightness

- Essential for energy saving, global warming
- Essential for comfort
- Needs a ventilation system to be designed

Why is Breathability desirable?

- No absolute moisture barriers
- No trapped moisture
- Provides evidence of building failure
- Self healing from building defects

Vapour movement through wall <u>– practically zero</u>

3 2.5 vapour pressure kPa SVP 2 -VP SVP 1.5 – VP 0.5 100 200 300 $\mathbf{0}$ thickness from outside mm OUTSIDE INSIDE

Fully Filled Cavity

Vapour movement through wall

- Interstitial Condensation occurs

Vapour movement through wall <u>– No Condensation</u>

Breathing and airtightness possible?

Mass flow through fabric

Healthy buildings

- Avoid formaldehyde-emitting materials
 - Solvent based adhesives & paints
 - Man made carpet fibres
 - Chipboard, plywood,OSB
- Use natural, non-toxic paints
- Treat timber only off site and where absolutely necessary
- Avoid uPVC if possible

The End