Friends, please remember the DE Christmas party!

Part 1: The Passivhaus concept

Part 2: DE construction – building fabric

Part 3: DE construction - energy and services

Part 4: Monitoring and Performance

Basic principle sustainable energy

Trias-Energetica

First limiting the energy use

Very efficient use of fossil fuels

Then use renewable energy

Applying the basic principles

LIMITING ENERGY LOSSES

Limiting transmission losses through fabric – thick walls and roofs

Limiting losses via uncontrolled air leakage – not just energy, but comfort

Limiting losses associated with ventilation - MVHR

MAXIMISING & OPTIMIZING ENERGYGAINS ><

OPTIMIZING PASSIVE SOLAR GAINS – playing with fire?

INTERNAL HEAT GAINS - the need to know - fabric/overheating

IDENTIFYING BEST RENEWABLES STRATEGY - PR and UK policy led

A passive building?

A building without heating??!!

A building with such a low space heating load that a **CONVENTIONAL** space heating system **CAN** be eliminated!

Why haven't we done that here?

.....specifically because of the building form.....

Passive House Criteria?

- Heat demand ≤ 15 kWh/m²year [15 Wing A and 14 Wing B]
- 2. Airtightness: n₅₀-value ≤ 0,6 h⁻¹ [Wing A&B = each 0.3]
- 3. Overheating ratio ≤ 10% year above 25°C [Wing A&B = 6%]
- 4. Primary energy ≤ 120 kWh/m²year [Wing A=90*, Wing B = 117*]
- 1. Heating load ≤ 10 W/m² [Wing A = & Wing B=]

* Dependent on adoption of Design Team's recomendations for e.e. IT & office equipment and any domestic appliances (over time?). Seperate report to client.

Impact of Energy Performance Standards on Non-Domestic Building Energy Use

Impact of Energy Performance Standards on Non-Domestic Building CO₂ Emissions

Important Building Characteristics

- •THERMAL COMFORT
- ACOUSTIC COMFORT
- AIR QUALITY
- VISUAL COMFORT

Selected key design principles

Construction methods

The PH concept is suitable for every construction method;

- Timber construction
- Masonry construction
- Steel construction
- Innovative methods e.g. Straw bale

Some are easier to use than others to achieve a successful result, some require more industry experience of successful low energy design and construction (e.g. Steel frame)

Selected key design principles

Construction methods

Some methods aid PH construction e.g.,

- Lattice floor joists (MVHR ducts)
- Raised access floors (insulated pipework)
- Dense masonry (maximise useful solar gain)

sludwork/timber cladding

construction

THERMAL MASS: WELL DISTRIBUTED THERMALLY MASSIVE ELEMENTS: CONCRETE & GYPSUM/CELLULOSE BOARDS

Selected key design principles

Thermal bridge free construction

≤ 0.1 W/mK [rule of thumb, c. 200mm insulation uninterupted around a junction

Investigations

Districtor

Thermal Inspections

Overall – infrared view

Grove Cottage

Case Study in low energy refurbishment

Project: refurbishment of solid walled Victorian townhouse, Hereford

Reduce the timber fraction

Relies on thermal integrity too – no gaps in your insulation!

Detail notes as per drawing D/01

Wall Constitution of them such that is with a profit of the constitution of the consti

Airtightness has to be designed!

Products: the importance of windows

Insulation strategy – windows

Thermogram 14 - Kitchen window, NW wall

Building services

- Heating
- Ventilation
- Hot and cold water
- Lighting

Building services

Heating

- Gas boiler and radiators
- Oversized radiators for low temperature
- Weather compensation for control and efficiency
- Thermostatic radiator valves for user control
- Straightforward technology not expensive

Ventilation

- Mechanical heat recovery ventilation
- Airtight building needs fresh air ventilation system
- Heat recovery needed for passivhaus energy level
- Exposed ductwork
- 3 MVHR units for simple zoning:
 - 1. Wing A
 - 2. Training room
 - 3. Wing B

Hot and cold water

- Gas boiler and solar thermal collector
- Highly insulated cylinder
- Microbore distribution
- Low water use taps
- 4 litre syphon flush WCs
- Waterless urinals

Lighting

- Design for daylight modelled in lighting program
- Light, high reflectance internal surfaces
- Electric lighting designed for 300 lux
- Efficient high light output fittings and T5 tubes –
 5.9 W/m² for internal lighting (+0.3 W/m² external)
- Daylight dimming in communal areas
- PIR in WC & corridor, manual in small offices

Integrated daylight and electric lighting design

Operator Telephone Fair e-Mail

Wing B / daylight factor / Summar

Height of Room: 5.300 m, Mounting Height: 2.500 m, Maintenance factor: 0.90

Values in Lux, Scale 1:2:

Surface	p [%]	E _{av} (b)	E _{min} [b]	E _{max} [lx]	
Workplane	1.	306	94	867	0.30
Floor	20	321	62	1561	0.19
Walls (9)	60	147	36	561	

Workplane:

Height: 0.750 m

Grid: 128 x 128 Points

Boundary Zone: 0.500 m

Illuminance Quotient (according to LG7): Walls / Working Plane: - , Celling / Working Plane: - .

Pure daylight scene, no luminaires involved.

Disability Essex

Telephone Fax +Mal

Wing B / electric lighting / Summary

Height of Room: 5.300 m, Mounting Height: 2,500 m, Maintenance factor: 0.90

Values in Lux, Scale 1:229

Surface	p [%]	E _{av} [b]	E _{min} [k]	E _{max} [ix]	u0
Workplane	1	395	32	474	0.080
Floor	20	352	19	482	0.054
Walls (9)	60	120	8.11	275	1

Workplane:

0.750 m Height: 128 x 128 Points Grid:

Boundary Zone: 0.500 m

Ruminance Quotient (according to LG7): Walls / Working Plane: - , Ceiling / Working Plane: - .

Luminaire Parts List

No.		Designation (Correction Factor)	4 [m]	P[W]
1	40	Thom Set 96234025 JUPITER 28 DI 1x29w HF + 96233016 JUPITER 2 1x28 DMB (STD) (1 000)	2600	31.0
			404000	1240.0

Specific connected load: 5.83 W/m² = 1.48 W/m²/100 lx (Ground area: 212.78 m²)

Daylight dimming in large rooms

Heating / ventilation interlock

- Problem: the vent system can provide fresh air
 cooling at the same time as the heating is on
 - Sunny winter day → fresh air cooling
 - Cold air in through vents → turn the heating up
 - Even more cold air in...

Result: discomfort + high energy consumption

Solution: one overall controller

- This provided by ventilation controls designed for duct heater, but here controls radiator zone valve
 - Winter vent controls set to "heating on" won't provide fresh air cooling (summer bypass)
 - Summer manual switch to "heating off" –ventilation bypasses heat recovery when warm

The outakes - bits that didn't go quite right

Problems in use

- Drying out the heating energy needed to dry out a just-completed wet plastered masonry structure is far more than Passivhaus heat loss
- High electrical use by tennant's IT equipment

MVHR is NOT air conditioning

- Daily swing 1.5-2C, but temp creeps up each day
- Without night cooling this building can overheat

What about next time?

- Radiators again that was easy!
- Simpler boiler controls
- Combi hot water don't use much at all
- Simpler vent controls and CO₂ speed control
- No daylight dimming of lighting just auto-off
- ALL south windows shaded
- Write user manual BEFORE users move in

