

Embodied Carbon in Buildings and Materials AECB 2011 Conference

16<sup>th</sup> September 2011

Dr. Craig Jones Craig.Jones@Sustain.co.uk

# Setting the Landscape Contents

- Introducing Sustain
- Political Context
- Introducing Carbon Footprinting
- A Landscape Overview: Key Activities & Standards
- Whole Life Carbon: Projecting the Future sustain

### **Embodied Carbon**

# **Introducing Sustain**





#### **About Sustain**

**Purpose**: help society become more sustainable

**Mission**: offer integrated solutions to the most pressing environmental challenges

**Goal**: we reduce carbon for our clients



# The Client Journey



#### Real Results with our Clients

# 4,231,460 tonnes of CO<sub>2</sub>e

Lifetime carbon savings with our clients, as of July 2011



# **Environmental Accounting**



















# Setting the Landscape



### **Political Context**



### Sustainable Development

There are over 200 definitions of sustainability – Sara Parkins, 2000

"Meeting the needs of the present without compromising the ability of future generations to meet their own needs"

Brundtland Report, 1987



# Worldwide CO<sub>2</sub> Emissions - Total

Worldwide GHG emissions rapidly rising



# Political Context International CO<sub>2</sub> emissions progress

| Region                             | 1990-2008 CO2 emissions | Kyoto Target |
|------------------------------------|-------------------------|--------------|
| World emissions                    | +40.1%                  | -            |
| <b>Kyoto parties with a target</b> | -9.2%                   | -4.7%        |
| Europe                             | +2.2%                   |              |
| North America (Canada)             | +27%                    |              |
| Pacific                            | +17%                    |              |
| Economies in transition            | -32%                    |              |

- Worldwide emissions have increased significantly
- Kyoto parties with targets have reduced CO2
- But only because of **significant reductions from "economies in transition"**, e.g. Czech, Hungary, Poland, Russia, Ukraine



# CO<sub>2</sub> equivalents (CO<sub>2</sub>e)

| GHG             | 100 year GWP Factor | Typical sources                                   |
|-----------------|---------------------|---------------------------------------------------|
| CO <sub>2</sub> | 1                   | Energy combustion, chemical/biochemical reactions |
| CH4             | 25                  | Decomposition                                     |
| N2O             | 298                 | Fertilisers, car emissions, manufacturing         |
| SF <sub>6</sub> | 22,800              | Switchgears, sub-stations                         |
| PFC             | 7,390 – 12,200      | Aluminium smelting                                |
| HFC             | 124 – 14,800        | Refrigerants, industrial gases                    |



World Greenhouse Gas Emissions in 2005 Total: 44,153 MtCO, eq. End Use/Activity Gas Sector Road 10.5% 14.3% Transportation 1.7% Rail, Ship, & Other Transport 2.5% Residential Buildings 10.2% Electricity & Heat 24.9% 6.3% Commercial Buildings Unallocated Fuel Combustion 3.8% Iron & Steel 4.0% Carbon Dioxide Aluminum/Non-Ferrous Metals (CO<sub>2</sub>) 77% Other Fuel 8.6% Combustion Chemicals 4.1% Cement 5.0% Industry 14.7% Other Industry 7.0% ··· T&D Losses 2.2% ..... Fugitive Emissions 4.0% Oil/Gas Extraction, Refining 6.4% & Processing Industrial Processes 4.3% (tropics only) Deforestation 11.3% HFCs, PFCs. Afforestation -0.4% Land Use Change\* 12.2% SF<sub>6</sub> 1% 1.3% Harvest/Management 1.4% Agricultural Energy Use Methane Agriculture Soils 5.2% (CH<sub>4</sub>) 15% Agriculture 13.8% 5.4% Livestock & Manure Rice Cultivation 1.5% Nitrous Oxide Other Agriculture 1.7% (N2O) 7% Waste 3.2% MORLD RESOURCES INSTITUTE

### **Embodied Carbon**





## What is a carbon footprint?

- A Carbon Footprint is a component of an ecological footprint (See figure)
- It's a spatial indicator Ha
- However for materials often...
- 'Carbon Footprint' = Embodied Carbon
- Embodied Carbon 2 components
  - (Fossil) Fuel-Related Carbon Typically most significant
  - Non-Fuel Related Carbon
- We must therefore start with Energy....
- Embodied Energy....



# Embodied Energy (EE) & Embodied Carbon (EC)

**Embodied Energy (Carbon) may be taken as...** 

...the primary energy consumed (carbon released) to extract, process, transport, and fabricate a product (or activity).

This ideally includes all direct and indirect energy & carbon sources associated to the product i.e. all energy **flows must be traced upstream...** 



# Life Cycle Thinking Tracing Impacts Upstream

- e.g. driving a car
- Fuel economy =50 mpg
- .....but this is only the direct fuel consumption!!
- Supporting
   activities = extra
   indirect impacts



# **Upstream Burdens**













# Life Cycle Thinking Tracing Impacts Upstream

- e.g. driving a car
- Fuel economy = 50 mpg
- .....but this is only the direct fuel consumption!
- Ancillary activities = extra indirect impacts



Real fuel economy = 45 mpg



# A Life Cycle Perspective The Life Cycle of a Building





# A Life Cycle Perspective The Life Cycle of a Building



### Setting the Landscape

Landscape Overview: Key Activities and Standards



## Landscape Overview

- HM Government Report Published in Autumn 2010
  - Low Carbon Construction Innovation & Growth Team (IGT)
  - Paul Morrell, Chief Government Advisor for Construction, chaired the group
  - Two recommendations on embodied carbon...



## Landscape Overview

sustair

Recommendation 2.1 That as soon as a sufficiently rigorous assessment system is in place, the **Treasury should introduce into the Green Book a requirement to conduct a whole life (embodied + operational) carbon appraisal** and that this is factored into feasibility studies on the basis of a realistic price for carbon.

Recommendation 2.2 That the industry should agree with government a standard method of measuring embodied carbon for use as a design tool and (as Recommendation 2.1 above) for the purposes of scheme appraisal

## Landscape Overview

- ICE: civil engineering standard method of measurement - CESMM3
  - Price book for project costing civil eng.
  - Now contains Embodied Carbon
- Hutchins: Blackbook, construction costs
  - Similar to above, cost book building
  - Now includes Embodied Carbon
- IStructE: publishing a guide on embodied carbon
- CIRIA and CIBSE



## The Inventory of Carbon & Energy (ICE)

- An embodied energy and carbon database for building materials
- Primarily for Construction Materials
- Data for over 200 materials
- Over 11,000 worldwide users
- BSRIA hardcopy published in January 2011





## Standards – Current & Emerging

- PAS 2050 (current, revision expected 2011)
- PAS 2060 (current) Carbon neutrality
- WRI/WBCSD GHG Protocol —Product Life Cycle Accounting and Reporting Standard (2011)
- \*\* CEN TC/350 for Construction \*\* (2011/12) —
   Sustainability assessment of construction works
- **ISO 14067** (2012) Carbon footprinting
- French Environmental Label A national initiative (2011/12)
   sustain

#### PAS 2050

 Developed by BSI and co-sponsored by the Carbon Trust and Defra



- Methodological basis for product and service carbon footprints
- Detailed assessment requiring considerable amounts of primary data
  - Upstream suppliers regularly require primary data
    - Factory energy consumption, purchased materials, waste...etc

# Streamlined Product Carbon Footprinting Sustain's QuickSteps<sup>TM</sup>

- PAS 2050 is a detailed assessment which offers accurate results
  - However it requires appropriate resources
- It's **not within the resources** of all companies wanting to invest in product carbon footprinting
  - e.g. SMEs
- Sustain's QuickSteps<sup>TM</sup> Streamlined product carbon footprints offer a cost effective solution
  - Robust methods combined with streamlined data collection
  - Provides a product specific footprint in a lower cost solution



# CEN TC 350 - Sustainability of Construction Works - Assessment of Buildings

- Emerging European standards on the "Sustainability assessment of construction works" late 2011 onwards
  - Environmental, economic and social performance
- Widely expected to be influential in construction
- There will be pressures on material manufacturers for certification of products – product carbon footprinting
- A product carbon footprint, i.e. QuickSteps, PAS 2050, could be used as a **precursor to future certification**

susta

#### Sustainable Procurement

Title: "BS 8903:2010

# Principles and framework for procuring sustainably – Guide"

"BS 8903 is a 'daughter' standard of BS 8900, which defines sustainable development as:

An enduring, balanced approach to economic activity, environmental responsibility and social progress."



#### What is Sustainable Procurement?

Procuring sustainably allows organizations to meet their needs for *goods, services, works and utilities* in a way that achieves value for money on a *whole life basis* in terms of *generating benefits* not only to the organization, but also to society and the economy, *whilst minimizing damage to the environment*.



# Balancing Sustainable Procurement Objectives



### **Greening Supply Chains**

- Many organisations are starting to realise that the largest share of their GHG impacts are coming from their upstream supply chains
  - e.g. NHS, BT, Tesco's, Walmart, Anglian Water
- Embodied carbon of procurement is significant
- Transport is not <u>typically</u> a major contributor for a whole building project
  - Naturally there are many exceptions
  - Sensible transport strategies are more important, especially for certain materials

# Greening Supply Chains Sensible Transport Strategies

#### Carbon Emissions per Tonne.km for Transport



## Setting the Landscape

## Whole Life Carbon: Projecting the Future





# Benchmarks – Embodied Carbon in Domestic Buildings



## **Embodied V Operational Energy**

- Average UK House 83 Sqm
- Embodied: 480 GJ & 36 tonnes CO2
- 2006 Building Regulations operational energy and carbon
- Energy = 7 yrs
- Carbon = 12 yrs
- Upgraded Specification
  - Energy = 11.5 yrs
  - Carbon = 19 yrs





### **Future Emission Reduction**

- The UK is legally committed to an 80% reduction in GHG emissions 1990-2050
  - with a 34% reduction by 2020
- These are highly ambitious and will require strong action from all sectors
- The electricity sector is expected to have an almost complete decarbonisation
- It's a centralised system which makes it easier to target
- Buildings consume large amounts of electricity



## **Future Electricity Emissions**

- Based on a DECC future electricity model
- In 2050 a unit of electricity will be 95% lower carbon

#### **GHG Intensity of UK Electricity, 2010-2050**





#### What does this mean for whole life carbon?

- Current models of whole life carbon are projecting based on today's emissions factors for electricity
- This gives 270% more emissions than a dynamic view

#### Static V Dymanic Projection of UK Electricity





## Case Study: A House

A static projection overestimates operational emissions by
 50%

Embodied & Operational GHG emissions for a Domestic Building





## Case Study: A Primary School

A static projection overestimates operation emissions by
 95%

Embodied & Operational GHG emissions for a Primary School





## Whole Life Carbon: Summary

- Current methods on whole life carbon need to become more sophisticated
- A simple and effective improvement is to look at the future of electricity GHG emissions
  - This has a large influence on the whole life carbon results of real buildings
- Embodied carbon is more important than currently coming out of whole life carbon studies
- As thermal standards increase ("zero carbon" homes/buildings) embodied carbon is becoming an important part of the whole life carbon

## Setting the Landscape

# Thank You

www.sustain.co.uk Craig.Jones@Sustain.co.uk

