Embracing Uncertainty - a new approach to the retrofit of existing buildings – Triage, Learning and Holism

> Neil May NBT, UCL, STBA

Key Issues for Radical Retrofit

- Lack of knowledge (data, relevant research)
- Complexity of interactions
- Conflicting priorities and values
- Human factors

With

- An urgent need to get on and do something
- The forces of evil (ie existing paradigms that are causing the problem)

Two different approaches

- Single value, non-reciprocal, end driven
- Plural value, reciprocal, means driven

Sustainable Traditional Buildings Alliance

- English Heritage, Historic Scotland, Cadw, SPAB, National Trust, RICS, RIBA, CITB, CIOB, CIAT, FMB, IHBC, UCL, GCU et al
- Set up in November 2011 to link historic building thinking and practice to mainstream construction and government policy
- Project on Responsible Retrofit of Traditional Buildings awarded by DECC Feb 2012, completed start of April 2012.

Responsible Retrofit of Traditional Buildings Project

- Gap analysis of research and guidance about energy performance of traditional buildings both as existing and as retrofitted
- Guidance structure to collate the best practice research and guidance
- Added during work:
- Implicit Guidance research
- Guidance tool ideas

Researchers and Writers

- Neil May (Lead NBT, GHA, UCL)
- Russell Smith (Director Parity Projectrs)
- Caroline Rye (Gap Analysis Archimetrics)
- Bill Bordass and Isabel Carmona (Guidance Structure – W Bordass Associates)
- Sophie Pelsmaker (Researcher UCL)
- Catherine Bull (Researcher RICS/ SPAB)
- Tom Randall & Laura Morgan (Support SDF)

Organisations active in review

- UCL
- SPAB
- English Heritage
- Historic Scotland
- Cadw
- Construction Skills
- RICS
- RIBA

Limitations

- Actual time input and process very short
- 9 authors, 12 organisations and 20 advisors
- However, drawing on much experience
- Brief peer review of parts of document prior to submission

• Report is not properly finished

Gap Analysis

- Traditional building performance as existing and retrofitted, in UK and beyond
- Methodology
 - Building on STBA Gap Analysis (research on UK traditional building performance)
 - UK Experts (8 from SPAB, UCL, GCU, WBA)
 - International Experts (14 lead profs from IEA Annex 55)
 - Extended literature search (Dr Caroline Rye and Sophie Pelsmaker)
 - Call for research (39 organisations 49 responses)

Research papers

- UK experts 104
- International 52
- Further Academic search 167
- Call for Research 120 (incl books, technical reports, and other documents)
- Also 17 active unfinished research projects (including TSB, EST, LEAF, SUSREF, EH, HS, and UCL work).
- Total 460 documents found for analysis

Guidance documents

- Search included in Research Gap Analysis method
- Additionally search from statutory bodies, councils, local energy trusts, other advisory bodies and on internet
- 102 documents were found worthy of analysis

Judging the value of the documents - where are the gaps?

- Are all areas of retrofit decision making and installation processes covered by the available research? i.e. the intelligence must be mapped.
- Which of the research provided has genuine worth? i.e there must be a judgement process

By carrying out these two processes we see where retrofit is adequately covered by intelligence and how well that intelligence has dealt with it.

Performance of Stocks of Buildings			1
	hole House erformance		2
		Materials Science	3
	Fabric	In general Walls U-Values Moisture	4 4a 4b
		Floors	5
		Windows/Doors	6
ts		Roof	7
nen		Thermal Bridges	8
Elements		Airtightness	9
seE	Services	Heating Approach	10
House		Heating Fuel	11
Ξ.		Electricity Source	16
		Cooling	12
		Ventilation	13
		Lighting	17
	Occupant Interaction	User Interface (Controls etc)	19
	Occupant Outcome	Internal Comfort	14
		Good health	15
	Aesthetics, Character and Significance		18 A C
			(Original) Traditional Buildings (Retrofitted) Traditional Buildings

		Qualities to Expect in Each Tier						
Tier	In general	Evidence Base	Independently Reviewed	Significance to a Defined Area on the Intelligence Map (may be more than one)*	Relevance			
Tier 4	Poor quality but record that we know it exists	Little real evidence base to the research; guidance is selectively based on evidence or based on no evidence.	No independent review	N/A	Misleading, wrong or harmless?			
Tier 3	The research is of value and makes some contribution to issues of retrofit of older properties and the in GD context	Evidence backs up the research	Some evidence of independent review.	It offers an insight to a particular area or areas on the Intelligence Map.	May have longer term relevance if not immediately relevant			
Tier 2	The research is of value and makes some contribution to issues of retrofit of older properties esp in GD context	Research evidence is based on modelling and simulation; guidance is based on Tier 1 or 2 research.	The research has not undergone peer-review.	It offers the strongest information in its area on the Intelligence Map	Immediate relevance			
Tier 1	Seminal research that identifies issues of greatest relevance to retrofit of older properties esp in GD context	Evidence backs up the research; guidance is based on Tier 1 research.	The research has been independently reviewed and verified as being derived from the evidence or is sufficiently critically reflective.	It offers the strongest information in its area on the Intelligence Map	Immediate relevance			

	Performance of Sto	1	\odot	•		
	Whole House Po	erforma	2	\odot	\bigcirc	
		Material Science 3			٥	$\overline{\cdot}$
		Walls		4	\odot	\bigcirc
			U values	4b	0	•
			Moisture	4c	0	·
	Fabric	Floors		5	0	\odot
		Windows / Doors		6	۲	\odot
		Roof		7	0	\odot
nts		Thermal Bridges		8	o	O
Building Elements		Airtigh	tness	9	0	\odot
Buildin				10	-	\odot
		Heating Fuel		11	*	\odot
	Services	Electricity Source		16		\odot
	Services	Cooling (passive & active)		12		o
		Ventilation		13	0	\odot
		Lighting		17		0
	Occupant Interaction	User in contro	terface (handles, ls, etc)	19		۲
	Occurrent Outcom	Internal Comfort		14	0	\odot
	Occupant Outcome Good Health		lealth	15		o
	Aesthetics, Characte	0	\odot			
					A (Original) Traditional Buildings	B (Retrofitted) Traditional Buildings

Gap Analysis of Research and Guidance

- 512 documents with 1241 references mapped
- 79% are on retrofit only 21% on traditional building performance – big gap in base line data and traditional building understanding.
- 3 main areas of research are performance of stock, whole house performance and solid wall performance, all retrofitted
- Some areas of real significance have almost no research or guidance (ie floors, overheating, occupant interaction, user health, lighting)

In nearly every category there are major knowledge gaps

- Lack of basic research nearly everywhere
- Real lack of data in regard to traditional materials, construction, air permeability/ ventilation rates and systems, and weather. *Gaps in data*.
- Over-reliance on modelling which has been shown to be unreliable in many cases. *Gap between models and reality*.
- Current thermal (BR443 including RdSAP) and moisture conventions (BS5250) are not correct for traditional buildings in most cases. *Gap between conventions and reality.*
- Lack of understanding of moisture physics. *Knowledge gap*
- Windows knowledge and research is good! But the information is not getting into mainstream guidance (*gap*!).

Linkages and opportunity gaps

- Ventilation to health of occupants
- Retrofit to thermal comfort
- Lifestyle to energy use and the possible rebound effects of retrofit
- Thermal mass to energy and comfort
- Energy conservation and building conservation (particularly repair and maintenance)
- Energy efficiency and heritage values
- Energy efficiency and community

Implicit Guidance

- Evident that most guidance is not from research or official guidance documents but from standards, certifications, and commercial technical and marketing literature
- This workstream was an attempt to understand whether Implicit Guidance is aligned with the best research and guidance (ie Tier 1 and 2) and what the main causes for concern might be.
- Very limited study

Examination of implicit guidance

- Building Regulations
- British Standards (BSI)
- Product Certification (BBA)
- CE Marking
- Trade Literature
- Warranties/ Guarantees

How are traditional buildings dealt with? Answer - hardly at all.

Case Study on Solid Wall Insulation

- Examination of Building Regulations, BBA certification and trade technical and other literature for EWI and IWI (46 BBA EWI certificates and 12 IWI certificates)
- Examination particularly of thermal and moisture issues in relation to Tier 1 and 2 research and guidance
- Very large gaps and misalignment found

Gaps between Tier 1 and Implicit Guidance

- Without exception all certifications, technical literature and advertising use BR 443 (BS 6946) or the RDSAP default values for solid wall U values and cost savings. This is incorrect.
- Thermal bridging in both EWI and IWI not properly dealt with.
- All use BS5250 (EN13788) rather than EN15026 (except where BS5250 doesn't allow use!) for moisture analysis

Recommendations

- Policy issues
 - New conventions
 - New standards
 - New assessment and training
- Delivery issues
 - A new approach based on learning and systemic thinking
 - Training and skills
 - A guidance structure and knowledge centre
- Development issues
 - A wide ranging research programme
 - Action based research and feedback

Conclusion

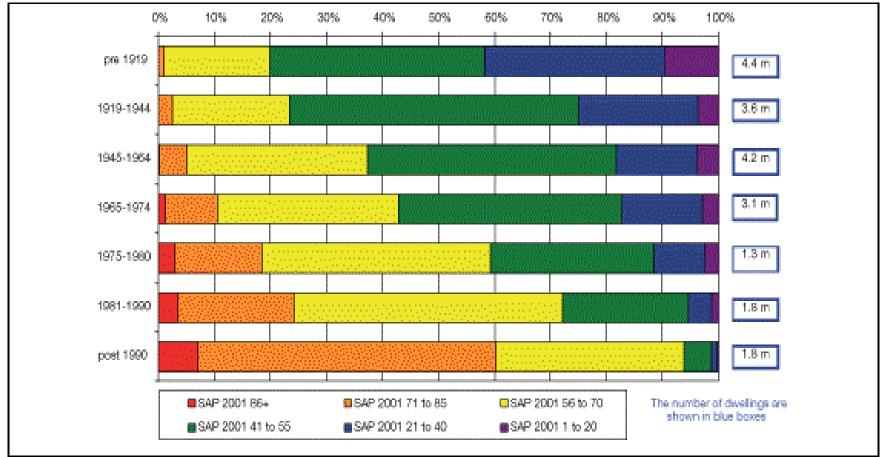
• If these recommendations are taken up, then some of the main risks to traditional buildings of the Green Deal policy may be averted. Furthermore it is believed by the STBA that, if these recommendations are carried through, the Green Deal and other retrofit policies could be undertaken with more financial, energy and environmental benefit than previously envisaged, and be a driver for significant positive change in industry (both in terms of employment and skills), in user behaviour and in terms of public understanding and engagement.

The problem of false certainty

- The difficulty of multiple factor complexity
- The complexity of situations where people are involved
- The failure of single focus solutions to deal with multi-causal problems
- The pressures to deliver and meet unrealistic targets or milestones.
- Commercial pressure to sell, sell, sell!

The opportunity of uncertainty

- The acceptance of a situation where there are no easy answers or perhaps no answers at all is liberating
- Uncertainty requires care, open-mindedness, and humility
- Uncertainty can lead to a different kind of success, perhaps a better one than we could imagine


Solid walls

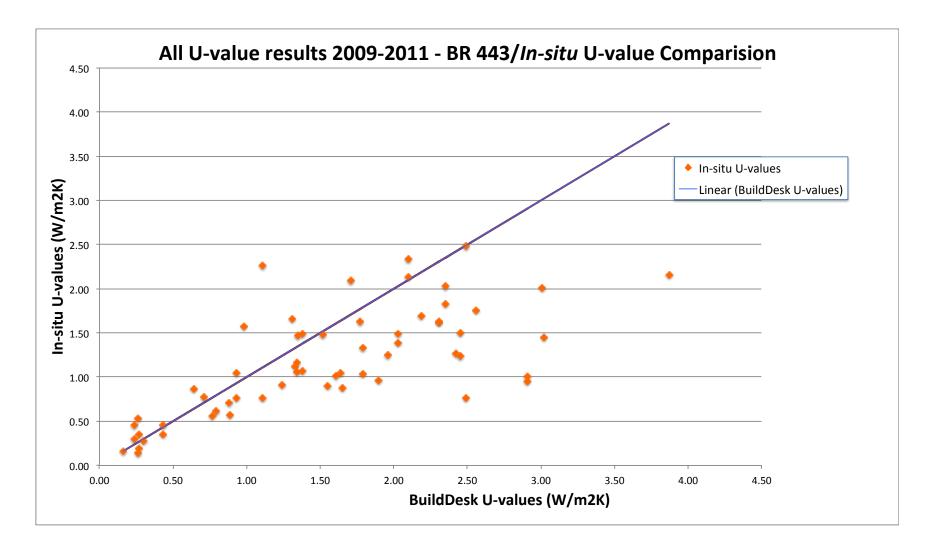
- Thermal and energy performance
- Moisture
- Health
- Community and culture?

Thermal and Energy Performance

- Background issue of U values of traditional walls and calculation methods
- Thermal Limits?
- Application in reality?
- User response

Old walls bad – new walls good

SAP energy assessment of dwellings based on age of stock.


Review of Sustainability of Existing Buildings, DCLG, 2006.

Thermal issues: Traditional walls

- Do not conform to type of wall suited to BR 443 (using BS 9496) – ie discreet layers of known materials
- Also no robust material data for traditional materials
- So are the Rd SAP values correct?

Thermal performance of traditional walls underestimated by BR 443 in 73% of cases (2009 – 2011, 59 samples)

Average in situ U-value for stone & brick walls

Age band	Α	В	С	D	Е	F	G	Н	Ι	J	K
Wall type											
Stone: granite or whin (as built)	2.4	2.4	2.4	2.4	1.7	1.0	0.60	0.60	0.45	0.35	0.30
Stone: sandstone (as built)	2.1	2.1	2.1	2.1	1.7	1.0	0.60	0.60	0.45	0.35	0.30
Solid brick (as built)	2.1	2.1	2.1	2.1	1.7	1.0	0.60	0.60	0.45	0.35	0.30
Stone/solid brick (external insulation)	0.60	0.60	0.60	0.60	0.55	0.45*	0.35*	0.35*	0.30*	0.25*	0.21*
Stone/solid brick (internal insulation)	0.60	0.60	0.60	0.60	0.55	0.45*	0.35*	0.35*	0.30*	0.25*	0.21*
Cob (as built)	0.80	0.80	0.80	0.80	0.80	0.80	0.60	0.60	0.45	0.35	0.30
Cob (external insulation)	0.40	0.40	0.40	0.40	0.40	0.40	0.35*	0.35*	0.30*	0.25*	0.21*
Cob (internal insulation)	0.40	0.40	0.40	0.40	0.40	0.40	0.35*	0.35*	0.30*	0.25*	0.21*
Cavity (as built)	2.1	1.6	1.6	1.6	1.6	1.0	0.60	0.60	0.45	0.35	0.30
Filled cavity ⁺	0.50	0.50	0.50	0.50	0.50	0.40	0.35	0.35	0.45^{\dagger}	0.35^{\dagger}	0.30^{\dagger}
Timber frame (as built)	2.5	1.9	1.9	1.0	0.80	0.45	0.40	0.40	0.40	0.35	0.30
Timber frame (internal insulation)	0.60	0.55	0.55	0.40	0.40	0.40	0.40^{\dagger}	0.40^{+}	0.40^{\dagger}	0.35 [†]	0.30^{+}
System build (as built)	2.0	2.0	2.0	2.0	1.7	1.0	0.60	0.60	0.45	0.35	0.30
System build (external insulation)	0.60	0.60	0.60	0.60	0.55	0.45	0.35*	0.35*	0.30*	0.25*	0.21*
System build (internal insulation)	0.60	0.60	0.60	0.60	0.55	0.45	0.35*	0.35*	0.30*	0.25*	0.21*

 Table S6 : Wall U-values – England and Wales
 Particular

* wall may have had internal or external insulation when originally built; this applies only if insulation is known to have been increased subsequently (otherwise "as built" applies)

⁺ cavity wall with internal or external insulation to be treated as filled cavity wall for the purposes of the SAP calculation.
 [†] assumed as built

Appendix S SAP 2009 – Stone 2.1 & 2.4 W/m²K, Brick 2.1 W/m2K

In situ U-value Stone & Brick = 1.48 W/m²K (average)

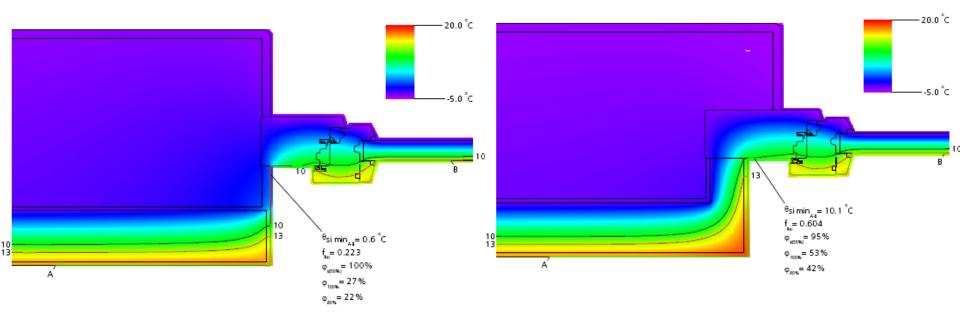
Trinity College results - monitoring

- Walls bone dry (extensive heating)
- Some very wet joists (one façade at ground level)
- Better thermal performance of the wall than modelled under modified BR443

	U-Value (W/m2K)
RdSAP 2009 default	2.1
Calculated (BuildDesk)	1.46
Measured (Heat Flux)	0.69 (average)

External lime render (20mm), natural stone (600mm), internal lime plaster (20mm)

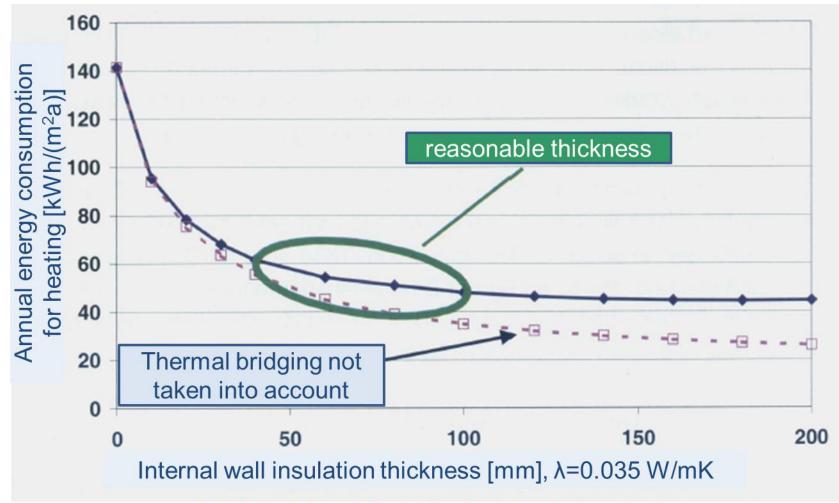
Trinity College results -monitoring


- Very different material properties between the two brick samples
- Initial monitoring of RH and Temperature fails
- Initial tests of in situ U values and air permeability completely different from second tests

	Test 1	Test 2		
In situ U values	1.4	0.7		
Air Permeability	22m3/m2/hr	11m3/m2/hr		

Consequences

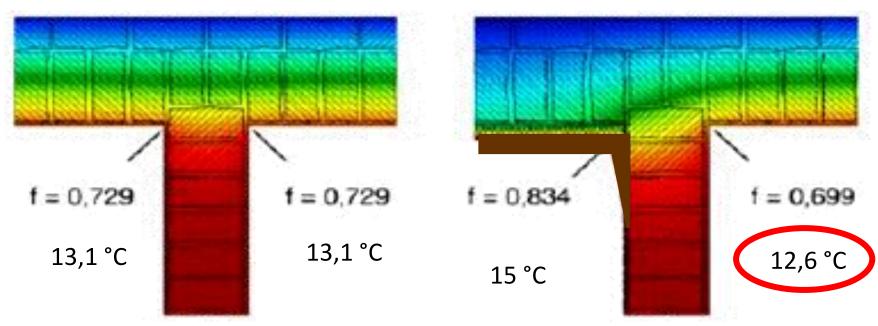
- We need more research and better understanding of solid wall thermal performance
- We need to be careful of modelling and monitoring. These require a lot of skill
- We need to be aware that the forecast energy and financial payback will almost certainly not be as good as predicted when buildings are retrofitted


Practical limits: Thermal Bridges

Refurbishment of a traditional stone wall with 60 mm insulation on the inside

- Reveal not insulated
- □ Reveal now insulated with 40 mm insulation

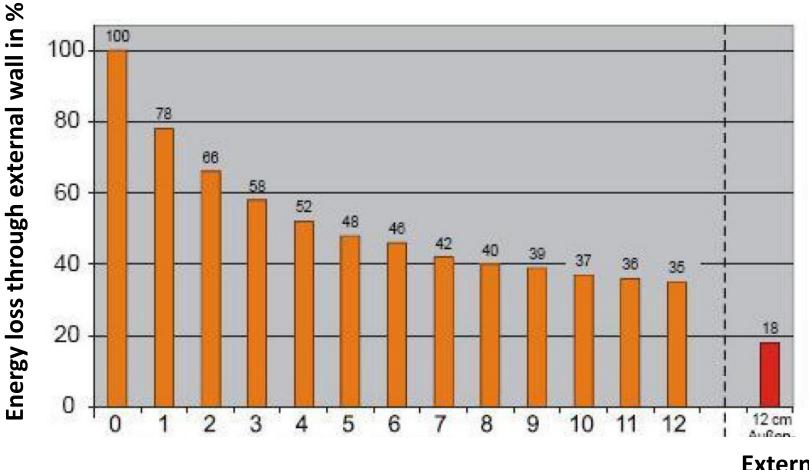
Thermal Limits (Internal Insulation)



Quelle W. Feist: Faktor 4 auch bei sensiblen Altbauten, Passivhauskomponenten + Innendämmung

Thermal Bridges: Party Wall Issues

Before


After

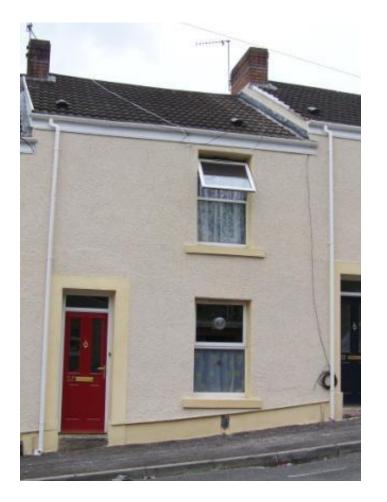
Partial fixed internal wall insulation:

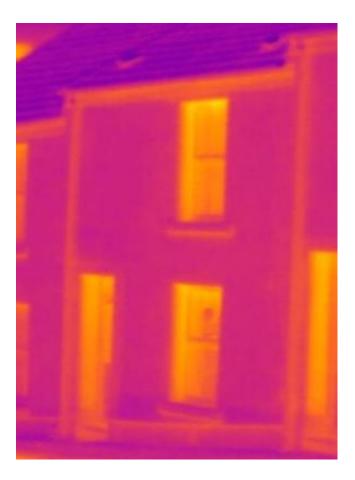
- Displacement of isotherms, surface temperature sinks on the noninsulated side of the wall
 - →Risk of mould / mildew

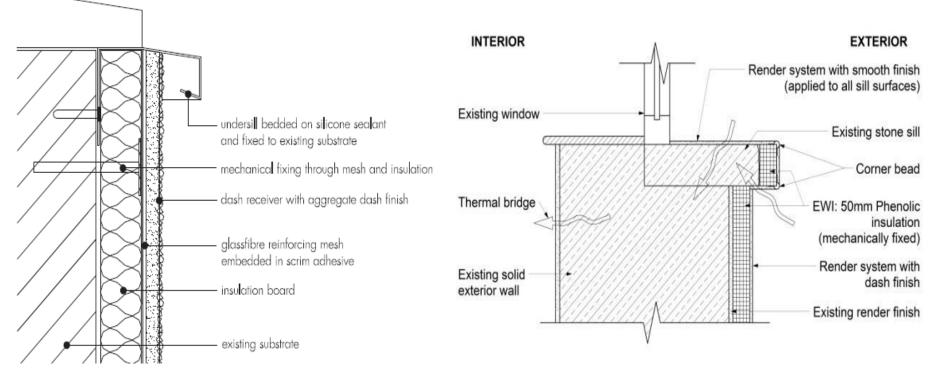
External Insulation versus Internal?

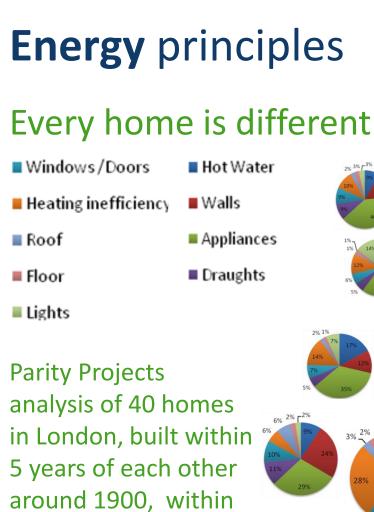
Thickness of internal insulation in cm

External insulation





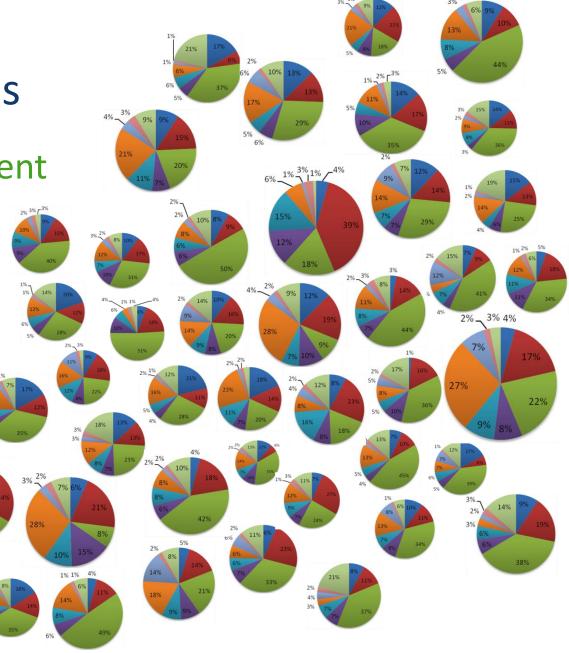

Reality



Detail in BBA Certificate

As applied on site

Energy/Carbon – the human factor


- Warm Front
- BedZed
- Traditional buildings?

one mile of each

removed

other, unusual houses

Moisture: more unknowns

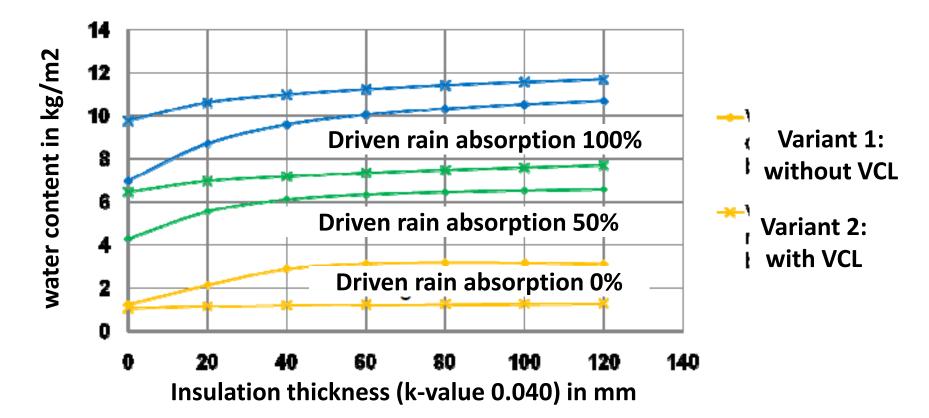
- Material data
- Weather data
- Moisture physics
- Durability of fabric over time
- Construction fault modelling

What we do know is that moisture is the main cause of building decay and one of the main causes of human health problems in buildings

Building Health & Human Health

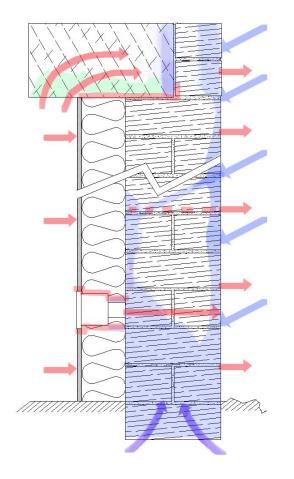
Decrease in Bar W Indicates Decrease		N. H. S. M. L	1-10-	Opti Zone	mum	-	10.030		
Bacteria								6145	
Viruses		/-					Alaria		
Mites					转动				
Respiratory Infections(1)	-246		- 					0.0000	
Allergic Rhinitie and Asthma		07-91					ingenge g		008) 1892
Chemical Interactions							65		
Ozone Production									
	10	20	30	40	50	60	70	80	90

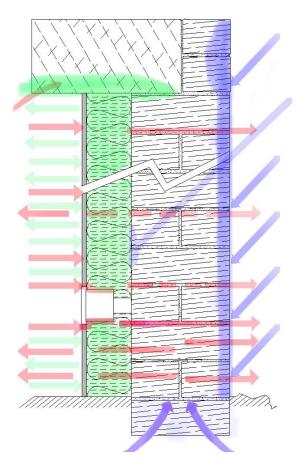
Conflicting understanding of mould risk?


- Driven rain is not so important in Germany as UK
- IBP sees presence of oxygen as critical
- RH limits in IBP
 - Max RH with air = 85%
 - Max RH without air = 95%
- Part F limits
 - 1 day 85%
 - 1 week 75%
 - 1 month 65%

Modelling Protocols

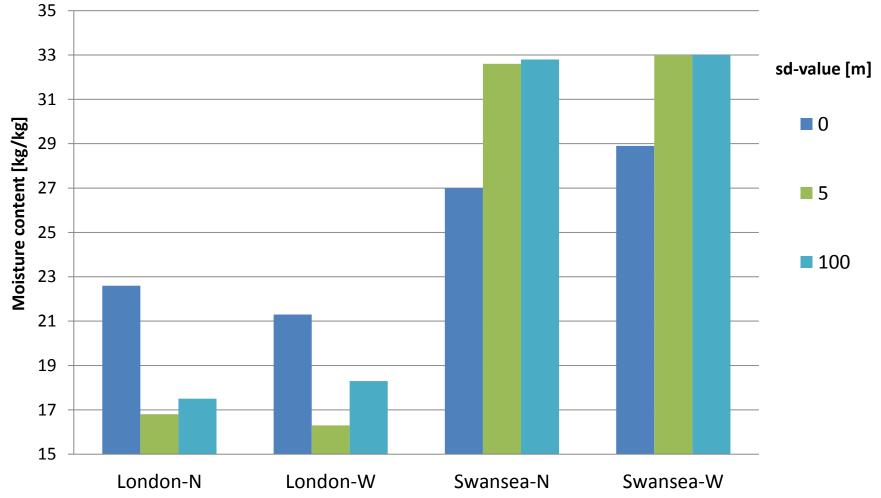
• BS EN 13788 (BS 5250) versus EN 15026

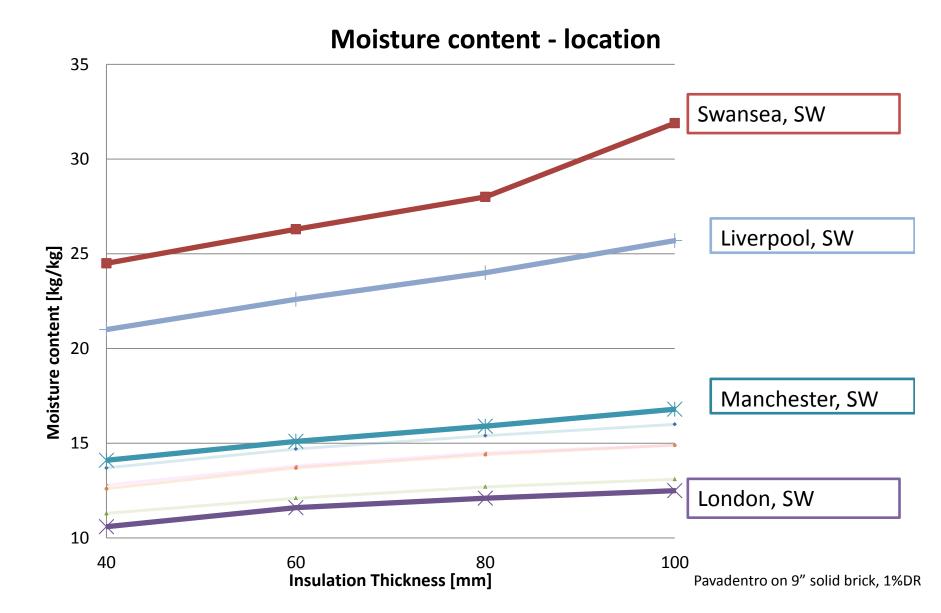

EN 13788	EN 15026
Steady state	Dynamic
Monthly (averaged)	Hourly
Limited materials criteria	Full materials criteria
No driven rain	Driven rain
No orientation	Orientation

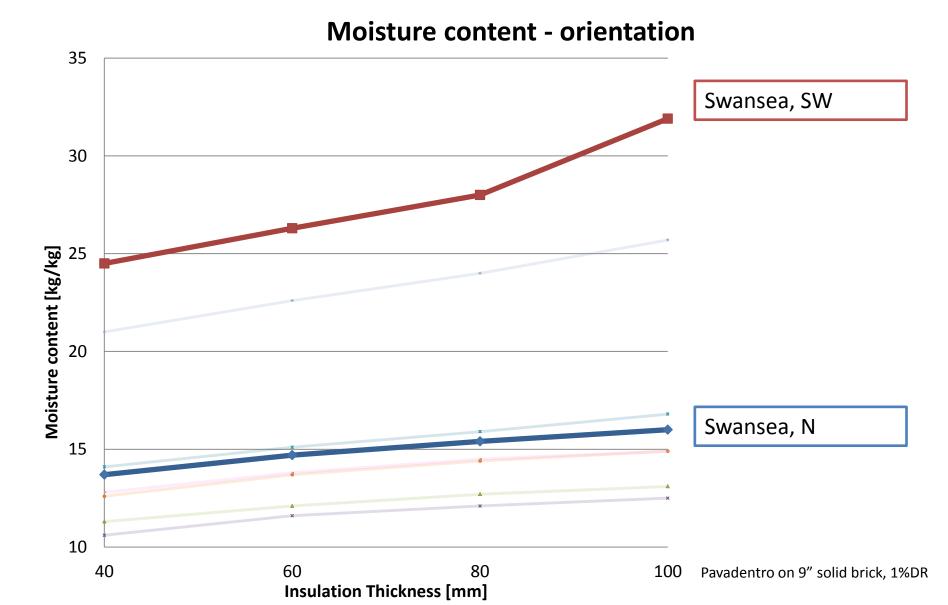

Driven rain and internal VCLs: Average water content of an external (German) wall

Source: Dr. A. Worch: Innendämmung: Bauphysikalische Aspekte, Probleme und Grenzen und Lösungswege für die Praxis (engl: Dr. A. Worch: Internal insulation: structural-physical aspects, problems and limits and solutions for the practice)

Internal Insulation Approaches

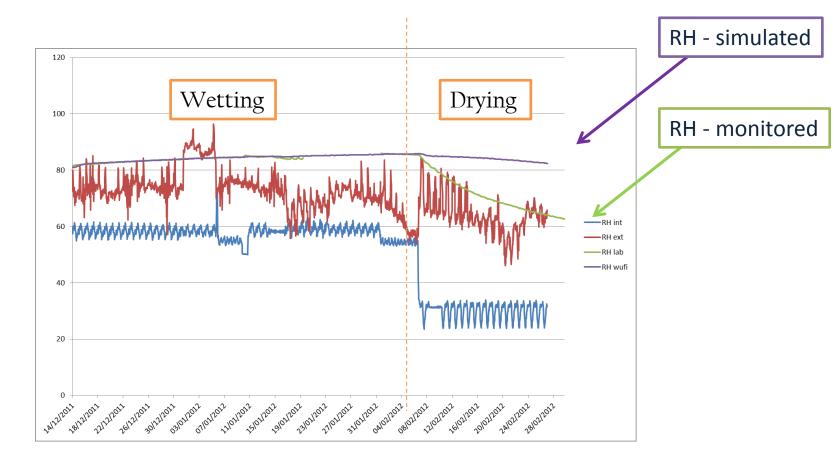



Non breathable


Breathable

Moisture content – different membranes

100mm Pavaflex on 9"solid brick, 0 DR



Problems with Modelling

- Human error
- Manipulation
- Data errors/ unknowns (ie OSB $\mu = 30/175$)
 - Material data
 - Weather data
- Simplification of complex structures
- Problems at junctions/ bits you can't model
- Issue of how to model bad application
- False certainty

Problems with WUFI models

Climate chamber – Pavadentro (sec.1)

What is the reality?

- How do things happen in reality?
- What happens when things are not done right?
- What about users? Old, young, disabled?

Health Performance?

IGT on Low Carbon Construction Recommendation 8.3:

"that, to avoid the risk of a new generation of sick buildings, the promotion of the health and wellbeing of occupiers should be placed on an equal footing with the current emphasis on carbon reduction."

Is anyone listening?

Health – VERY complex

- Interaction insulation, airtightness and ventilation with fabric moisture, living conditions and human health... Umm
- Research work sees known risks with dust mites, overheating, and even obesity of thermally better housing.
- What about unknowns?

Real Dangers of Bad Energy Efficient Building Envelopes

- Increased Cardio-Respiratory illness (Lancet)
- UCL research found an increase in dust mites in beds of 2500 x base case house when air permeability 10m/hr was decreased to 3m/hr.
- Decrease by 60% at 20m/hr
- Also 350 x increase over base case when one type of MVHR was installed
- Minor increases when U values improved

Modern ventilation?

- Work by AECOM for Part F 2010
- Airtightness in new buildings was better than predicted (on completion – no long term analysis).
- Ventilation of all type fails to provide sufficient air changes in majority of cases.
- Out of 22 dwellings assessed with natural ventilation 70% fail to have sufficient air changes. 4 exceed safe mould levels and 11 exceed safe VOC levels.
- Out of 9 houses with mechanical ventilation 8 fail to have sufficient air changes, one by 63%.
- BSRIA report 95% failure rate in MVHR system air quality

Big UNKNOWNS

- Effect on community
- Effect on culture
- Effect on relationship with the natural environment

Radical retrofit requires rethinking

- Is fabric the best place to start?
- How do buildings relate to lifestyle and community?
- How do we encourage learning and engagement?
- Do we start with buildings or with food, or childcare, or something else? Or do we several things together?
- What is sustainability for?
- What are humans for?

STBA proposal

We need to accept our current lack of knowledge and the possibly unresolvable complexity of this situation and turn it to good.

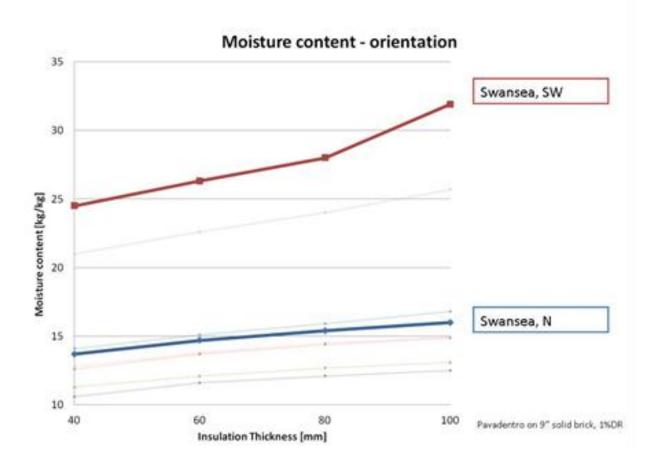
This led to a specific proposal for

- Learning based approach, based on a guidance structure: iterative, open, contextual, systemic, holistic, with feedback mechanisms
- Linked to public knowledge centre to guide research, training, and to log, analyse and integrate feedback

Upgrade Analysis

						Mea	sure type (Fabri	c/Services/Beha	viour)					
							Associ	ated measures re	equired					
Upgrade	GD	Context	Energy	Technical	Heritage	Right	BEFORE	DURING	AFTER	Monitoring /	User Issues	Guidance	Research	Case Studies
	eligible	Dependence	Benefit or	Benefit or	Benefit or	opportunity?	Pre-	Quality Control	Maintenance	Feedback				
		(H/M/L)	Risk	Risk	Risk		implementation		Requirement					
							checks							
Measure subtype	e (e.g. wa	all, roof, heat g	eneration, peo	ple interaction)										
Upgrade type														

External Wall Insulation


							FAI	BRIC	second and a second					
Upgrade		Context Dependence (H/M/L)	Energy Benefit or Risk	Technical Benefit or Risk	Heritage Benefit or Risk	Right opportunity?	Associ BEFORE Pre- implementation checks	ated measures n DURING Quality Control	AFTER	Monitoring / Feedback	User Issues	Guidance	Research	Case Studies
Wall(s)														
External wall insulation		H = High. Fabric quality and make up. Exposure. Heritage value				Easier to implement as whole block/terrace measure.	Check U-value of original fabric and compare with modelled values-see research ID14 & 15	detailing to keep character and minimise	Check integrity of drains and gutters and that external wall is kept dry, in good condition. Ensure ground levels are kept low.	Check U-value of Insulated fabric	Comfort "Take back" effect means less energy savings?		(See docs List) 12No Tier 1 Research Refs	
	v		Likely reduction of heat loss but Less reduction loss than expected? Check U-value	quality	character?	At change of tenancy or ownership	Check hygrothermal properties of wall and exposure. Thickness of insulation and risk?-see guidance and research ID 39	Carry out Condensation/ Moisture Risk for proposed solution and detail. [Various Research] Check Installation needs and carry out as per detail iD 50	thermal bridges	Feedback any Moisture/mould problems?	Sufficient dwelling vertilation when draughtiness improved? Research ID 1,15	[See docs List]		[See docs Lis 6No Tier 1 Ca Study Refs
						When it can improve haritage character	Check external detailing - survey to identify what needs moving (pipes etc), existing thermal bridges (research ID 53)	Installation quality checks - continuity of insulation - thermal imaging?						

Developing the analysis into a tool: Context specific IWI

							FA	ABRIC			
							Assoc	iated measures required	1		
Upgrade		Dependence	Benefit or	Technical Benefit or Risk	Heritage Benefit or Risk	Right opportunity?	BEFORE Pre-implementation checks	DURING Quality Control	AFTER Maintenance Requirement	Monitoring / Feedback	User Issues
Wall(s)											
Internal wall		H = High. Fabric quality= good				When decorating room with external wall	Check U-value of original fabric and compare with modelled values -see research	Careful detailing to keep character and minimise thermal bridges		Check U-value of insulated fabric	Floor space reduction. See Case Study ID28 Restrictions on use (picture hanging possible?)
	Y	and make up = solid wall brick, estate of repair= normal. Exposure= High Swansea North Wall . Heritage value = conservation area but no internal	Likely reduction of heat loss but Less reduction loss than expected? Check U-value	Risk of trapped moisture HIGH Check fabric quality	1	ake of insulation and risk? correct data. CHECK MEDIUM keep insulation Suitability of	Feedback any Moisture/mould problems? Moisture monitoring at risk locations (eg. Joist ends, Thermal bridges)	location? - see research ID50 - increased mould growth risk. Restriction on			
		features				When carrying out repairs	Investigate internal fabric - check there is no hidden heritage features - see guidance	Installation quality checks - continuity of insulation - thermal imaging?	Maintain air barriers on insulation wall interface - don't' make holes!		Sufficient dwelling ventilation when draughtiness improved? Research ID 1,1!

								ABRIC		3	
Jøgrade		Context Dependence (H/M/L)	Energy Benefit or Risk	Technical Benefit or Risk	Heritage Benefit or Risk	Right opportunity?	Asso BEFORE Pre-implementation checks	clated measures required DURING Quality Control	AFTER Maintenance Requirement	Monitoring / Feedback	User Issues
Vall(s)											
Internal wall insulation		H = High. Fabric				When decorating room with external wall	Check U-value of original fabric and compare with modelled values-see research	Careful detailing to keep character and minimise thermal bridges		Check U-value of insulated fabric	Floor space reduction. See Case Study ID2 Restrictions or use (picture hanging possible?)
	Y	qualitys good and make up = solid wall brick, estate of repairs normal. Exposure* High Swanses South West wall. Haritage value = conservation area but no internal	Cikely reduction of heat loss but Less reduction loss than expected? Check U-value	molecure HIGH Check fabric quality	d Acceptable - H possible to make reversible?	At change of tenancy or ownership	Check hygrothermal properties of wall and exposure KIGH Swangea SW Wall. Thickness of insulation and risk? HIGH even at low insulation thickness-see guidance and research ID 39 and attached slides. Carry out Condensation /Moisture Risk for proposed solution and detail to Standard EN15026	Check well fabric qualities against hygrothermal models. If different re-model with correct data. CHICK Suitability of INSULATION SYSTEM. Understand installation detail.	Keep an eye for mould /surface condensation or damp	Feedback any Moisture/mould problems? Moisture monitoring at risk locations (eg. Joist ends, Thermal bridges)	Restrictions or furniture location?-see research 1050 increased mou growth risk. Restriction on finishes - breathability retained when appropriate
		features				When carrying out repairs	Investigate internal fabric - check there is no hidden heritage features - see guidance	Installation quality checks - continuity of insulation and air barrier - thermal imaging?	Maintain air berriers on insulation wall interface - don't' make holes!		Sufficient dwelling ventilation who draughtiness improved? Research ID 1,3

Based on current best research

Another example – heritage context

							Associated measures required					
Upgrade	GD eligible	Context Dependence (H/M/L)	Energy Benefit or Risk	Technical Benefit or Risk	Heritage Benefit or Risk	Right opportunity?	BEFORE Pre-implementation checks	DURING Quality Control	AFTER Maintenance Requirement	Monitoring / Feedback	User Issues	
Wall(s)	-											
		H = High. Fabric quality=good				When decorating room with external wall	Check U-value of original fabric and compare with modelled values -see research	Careful detailing to keep character and minimise thermal bridges		Check U-value of insulated fabric	Floor space reduction. Se Case Study ID Restrictions o use (picture hanging possible?)	
Internal wall insulation	Y	and make up = solid wall brick, estate of repair= normal. Exposure= Low LONDON Heritage value = conservation area but no internal	Likely reduction of heat loss but Less reduction loss than expected? Check U-value	MEDIUM Check fabric quality	possible to make	tenancy or ownership	Check hygrothermal properties of wall and exposureLOW LONDON Thickness of insulation and risk? LOW insulation thickness up to100mm-see guidance and research ID 39 and attached slides. Check moisture/ condensation risk to EN 15026	Check wall fabric qualities against hygrothermal models. If significantly different re- model with correct data. CHECK Suitability of INSULATION system. Understand installation detail.	Keep an eye for mould /surface condensation or damp	Feedback any Moisture/mould problems? Moisture monitoring at risk locations (eg. Joist ends, Thermal bridges)	Restrictions o furniture location? - see research ID50 increased moi growth risk. Restriction on finishes - breathability retained wher appropriate	
		features				When carrying out repairs	Investigate internal fabric - check there is no hidden heritage features - see guidance	Installation quality checks - continuity of insulation - thermal imaging?	Maintain air barriers on insulation wall interface - don't' make holes!		Sufficient dwelling ventilation wh draughtiness improved? Research ID 1	

Same but with listed features

Upgrade	GD eligible	Context Dependence (H/M/L)	Energy Benefit or Risk	Technical Benefit or Risk	Heritage Benefit or Risk	Right opportunity?	BEFORE Pre-implementation checks	DURING Quality Control	AFTER Maintenance Requirement	Monitoring / Feedback	User Issues
Wall(s)											
Internal wall insulation	Y	H = High. Fabric quality=good and make up = solid wall brick, estate of repair= normal. Exposure= Low LONDON Heritage value = Listed Good Internal	Likely reduction of heat loss but Less reduction loss than expected? Check U-value	MEDIUM Check fabric quality	Intricate internal	When decorating room with external wall At change of tenancy or ownership	fabric and compare with modelled values -see research Check hygrothermal properties of wall and exposureLOW LONDON Thickness of insulation and risk? LOW insulation	Careful detailing to keep character and minimise thermal bridges Check wall fabric qualities against hygrothermal models. If significantly different re- model with correct data. CHECK Suitability of INSULATION system . Understand installation detail.	drains and gutters and that external wall is kept dry, in good condition. Ensure ground levels are kept low. Keep an eye for mould /surface condensation or	Check U-value of insulated fabric Feedback any Moisture/mould problems? Moisture monitoring at risk locations (eg. Joist ends , Thermal bridges)	reduction. See Case Study ID28. Restrictions on use (picture possible?) Restrictions on furniture location? - see research ID50 - increased mould growth risk. Restriction on
		features				When carrying out repairs	Investigate internal fabric - check there is no hidden heritage features - see guidance. Internal features valuable and in good state of repair	Installation quality checks - continuity of insulation - thermal imaging?	Maintain air barriers on insulation wall interface - don't' make holes!		Sufficient dwelling ventilation when draughtiness improved? Research ID 1,15

Can use for services also

							SER	VICES						
	25-51	Context Dependence (H/M/L)	Energy Benefit or Risk	Technical Benefit or Risk	Heritage Benefit or Risk	Right opportunity?	Associ BEFORE Pre- implementation checks	ated measures n DURING Quality Control	equired AFTER Maintenance Requirement	Monitoring / Feedback	User Issues	Guidance	Research	C
Gas	M=Medium Gas		Increase air		On appliance breakdown	Check potential routes for pipework and flue do not clash with original features. Also aesthetics of radiators if newly	Quality Control in positioning boiler flue and routing pipework.	Yearly service	Energy savings realised?- Comfort "take back"		[See docs List] 1No Tier 1			
ency g	Y ro Us pr	Availability. Suitable route for flue. User Energy consumption profile (h/m/l)	Likely Improved efficiency. Less CO2? - but see research ID32	permeability? Moisture of condensing plume may dampen fabric?	Same as before if same heating mode		Are there suitable insulation measures to combine with boiler change? See Guidance ID46	Careful installation to avoid increasing fabric permeability - see research ID 20				Guidance Refs	[See docs List] SNo Tier 1 Research Refs	1
							Check usability of controls - see guidance/resear ch ID 56	Choice of controls? - user involvement?		Usability of controls? User difficulties?	Need advice on controls and operation	BSRIA publication: Controls for End Users: Aguide for good design and implementation		

An open, iterative, learning tool

- Updatable on the basis of new research and monitoring feedback both from academics and from Green Deal process.
- Can be used to estimate and quantify risk and to put in measures to deal with this
- Although focused on energy it incorporates non energy and incommensurable values in an open discursive structure
- Can be used by all parts of supply and user chain, GD and communities
- Requires intelligence and learning, but not too much!

For solid wall buildings only?

 Different in some details from all other buildings, but principles and the necessary approach are the same

Value pluralism in practice

- Accepting no single pre-destined answer
- Accepting different, often conflicting and sometimes incommensurable values (with different metrics)
- Accepting different levels of knowledge and interest
- Accepting uncertainty of data and outcomes
- Validating reciprocity and compromise
- But not relativist or nihilist in fact the opposite!

Furthermore

- A way to get on now
- A defence against the dominant paradigm

• An opportunity for a holistic and fully human programme of learning, work and enjoyment

Thank you for listening

www.natural-building.co.uk