

Passive solar 500 BC "Only primitives & barbarians lack knowledge of houses turned to face the winter sun." Aeschylus C 500BCE

Ignoring passive solar, 2012 AD Technology (the use of fossil fuel) has enabled us to continue to build like 'primitives and barbarians'

A passive solar garage

New housing in my village - with solar water heating (it's in Wales)

Ignoring passive solar, 1976 AD

Technology (the use of insulation, MVHR, etc.) has enabled us to turn our back on the sun – for heating and delight...and we didn't consider materials

- 1976 CAT Wates Conservation House. (Peter Bond Architect)
- 10.1kWh/(m².a) measured.
- 450mm insulation, quad plain glass windows, MVHR, heat pumps. Uvalues 0.075W/m²K

CAT in the 1970s and 80sEnergy is everything

Plastics foam insulation, cement concrete, treated timber, PVC.

Boom and bust

In most runs of the World3 computer model, rapid growth is followed by sharp decline. So far the standard run (main graphic) corresponds well with measurements of real-world equivalents (dotted lines)

STABILISED SCENARIO

NewScientist

So that's my worry...

In some cases limiting growth resulted in SILENT THE the system stabilising rather than ****** Actual data Andel crashing. But SPRING nowadays no realistic assumptions RESOURCES 1962 produce this outcome 1900 2100 BIRTHS The C.L.A.S.S.I.C. Bar, L.A.U.N.C.H.E.D. A EXALEONMENTAL MONEMENT tty-and what we can do about it before little runs out. 'One of the most important documents of our age!" ... Anthony Lewis, The New York Times Club of Rome 1972 RACHEL DEATHS CARSON Ecologist F000 DONELLA H. MEADOWS/DENNIS L. MEADOWS Greenhouse JØRGEN RANDERS/WILLIAM W. BEHRENS III gas levels. NDUSTRIAL OUTPUT POLLUTION A POTOMAC ASSOCIATES BOOK 1900 2100

E.E. 1973 SCHUMACHER SMALLIS BEAUTIFUL ...with the amazing success that is PH, should we not try and do same for materials, etc.

It is all about poisons...

REACH

EU Registration, Evaluation & Authorisation of Chemicals "There are some 140,000 different chemical substances involved. The regulation is not only applicable to stand-alone chemicals or those in compounds, but also to chemicals in consumer productsIn addition, the ECHA must be notified of products containing more than 0.1% of substances of 'very high concern', even if no release is involved."

Boric acid	233-139-2, 234-343-4	3, 11113- 50-1	2010/06/18	reproduction (article 57 c)	ED/30/2010	-	Details
Sodium chromate	231-889-5	7775-11-3	2010/06/18	Carcinogenic, mutagenic and toxic for reproduction (articles 57 a, 57 b and 57 c)	ED/30/2010	e:	Details
Acrylamide	201-173-7	79-06-1	2010/03/30	Carcinogenic and mutagenic (articles 57 a and 57 b)	ED/68/2009	<i>6</i>	Details
Lead chromate molybdate sulphate red (C.I. Pigment Red 104)	235-759-9	12656-85-8	2010/01/13	Carcinogenic and toxic for reproduction (articles 57 a and 57 c)	ED/68/2009	e.	Details
2,4-Dinitrotoluene	204-450-0	121-14-2	2010/01/13	Carcinogenic (article 57a)	ED/68/2009		Details
Anthracene oil, anthracene-low	292-604-8	90640-82-7	2010/01/13	Carcinogenic ³ , mutagenic ³ , PBT and vPvB (articles 57a, 57b, 57d and 57e)	ED/68/2009		Details
Lead chromate	231-846-0	7758-97-6	2010/01/13	Carcinogenic and toxic for reproduction (articles 57 a and 57 c)	ED/68/2009	۰.	Details
Tris(2-chloroethyl)phosphate	204-118-5	115-96-8	2010/01/13	Toxic for reproduction (article 57c)	ED/68/2009		Details

(Ruifrok, P. 2012) (REACH. 2012)

SIN List

Substitute it Now! (SIN 2012) •378 chemicals identified as 'Substances of Very High Concern'''fast track to a toxic-free world'' •Styrene below

8.	100-42-5	Styrene		Hide info 🗸
Name		Styrene	Production volume	>1000 tonnes/year, HPV. Source: ES/S
CAS Nu	mber	100-42-5. Source: ESIS	(Bio)monitoring data	Yes, in air, drinking water, exhaust fumes (from incineration, industries,
EC Num	ber	202-851-5. Source: ES/S		cars etc), in soil, sediment. In human breast milk. Styrene trimers migrate
Synonyı	ms	Styrol; Estireno; StyrÃ"ne; Cinnamene; ethenyl benzene; phenylethene; phenylethylene; vinylbenzene. Source: ESIS; EURAR 2002	Information on uses	into food from polystyrene containers Source: HSDB; Polzin et al 2007 Manufacture of plastics (polystyrene, expandable polystyrene, ABS,
Risk ph	rases	R10 : Flammable; R20 : Harmful by inhalation; R36/38 : Irritating to eyes and skin Source: ES/S		resins, rubbers (polyester resins) and latexes). Produced products include packaging, electrical and thermal insulation, putty, paints, adhesives, fiberglass, pipes, automobile parts, carpet backing, drinking
Classifi	cation	R10; Xn: R20; Xi: R36/38. Source: ES/S		cups and other food-use items (1), automobile tires, plastics, waxes,
Envisag deadline	ed Registration e	30/11/2010. Source: ECHA		paints and varnishes, adhesives, metal cleaners (2). CD cases, drinks cups, food containers and refrigerator door liners (polystyrene), home insulation, packaging material, padding inside motorcycle helmets, in car interiors (expandable polystyrene foam) (3); construction materials & boats (glass fiber-reinforced, unsaturated polyester resins) (4). Source: <i>KEMi</i> ; Vodicka et al 2006, (1) INEOS; (2) Health Canada; (3) Shell; (4) HSDB
			Technical function of substance Final assessment for inclusion on the SIN List.	Multiple and the second

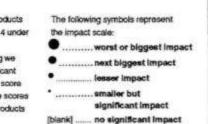
Issue No. 2 February 1995

Green Building Digest

Thermal Insulation Materials

Contents

About the Digest	Inside Front
Insulation	
Product Table	
Product Analysis	



Production

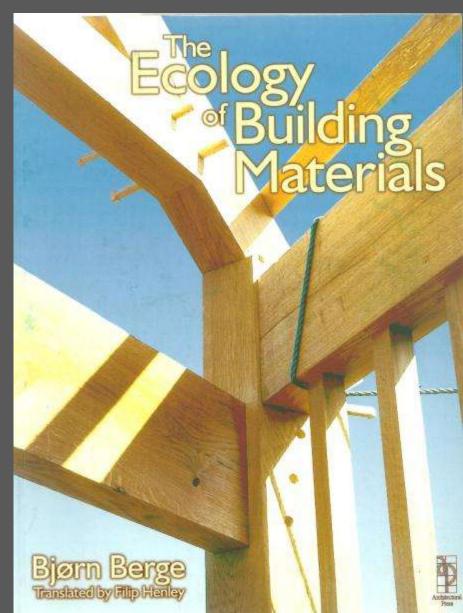
					1	1			Pn	du	tion			Use
Insulation Materials	/3	PR PR	A COMPANY	the second of	and a second		al man and and and and and and and and and a	A AN AN AN AN AN AN	1 40 00 00 00 00 00 00 00 00 00 00 00 00	a a	and a star	A Dane	AN AN AN AN	a de a
Cellulose Fibres	n/s												?	
Compressed Straw slabs	n/a	•	•											
Cork	7.2	•												
Foamed Glass	16,7	•		•			•	•	•	•				
Glass Wool	1.0	•		•			•	•	•	•			•	
Phenolic Foams	68	•		•	?	?	•	•	•	•			•	HFCs, HCFCs
Polystyrene - expanded	3.1	•		•			•	•	•	•			•	1
Polystyrene - extruded	8.2	•		•	?	?	•	•	•	•			•	HFCs, HCFCs
Rigid Urethane Foam	4.9	•			?	?	•	•	•	•			•	HFCs, HCFCs
Rock Wool	1,0	•		•				•	•	•		•	•	
Softboard	9.5		•										T	
Softboard + bitumen	8.7		•	•			•	•		•		•		
Urea-formaldehyde Foam	n/a	•		•			•	•	•				•	
Vermiculite (expanded)	n/a	•								•			2	
Wood-wool slabs	11.6	•	•	•	•		•		•	•				
Wool	10,4													

Key to the Table

The environmental impacts of products are railed on a scale from zero to 4 under each impact catogory. A blank represents a zero score, meaning we have found no evidence of significant impact in this category. Where a score is assigned, bear in mind that the scores are judged relative to the other products on the same Table.

Green Building Digest 2 - Thermal Insulation Materials - February 1995

Bjørn Berge approach


"Are there environmentally friendly alternatives which can be substituted for harmful chemical substances?"

"Can raw materials from nonrenewable sources be replaced by raw materials from plentiful or renewable sources?"

"Is it possible to design and manufacture reusable building materials?"

(Berge. 1995)

Bjørn Berge approach

An environmental profile, based on toxic harm, embodied energy etc., for the reader to make their own judgement.

	Specific therma	Effects on	resource	\$	Effects of poll				Ecological p	otential	Environ-
Material	conduc. (W/mK	1			Extraction and production	Building site	In the building	As waste	Re-use and recycling	Local production	mental profile
Still air	0.024						7				
Water	0.50										
Dry snow	0.06-0.4										1
Expanded perlite, untreated, 170 mm	0.045-0	1	2		2	2	1	1			1
Expanded perlite, with bitumen, 190 mm	0.055	2	2		2	1	2	3			2
Lightweight aggregate concrete blockwork (structural), 750 mm	0.210	3	3	2	2	1	1	1	1		3(1)
Aerated concrete blockwork (structural), 400 mm	0.08	2	3	2	2	1	1	1	1		2(1)
Foamglass boards, 170 mm	0.045	2	3	2	3	1	1	1			2
Foamglass granules, 350 mm	0.07	1	2	2	1	1	1	1			1
Mineral wool, 150 mm	0.04	2	2	2	2	2	2	2	1		2
Expanded clay pellets 430 mm	0.115	1	3		2 .	1	1	1	1		~
Expanded polyurethane 135 mm	0.035	3	3	3	3	1	3	3			3
Expanded and extruded polystyrene 150 mm	0.04	3	3		3	1	2	3	1		3
Expanded ureaformaldehyde, 180 mm	0.05	3	3		3	3	3	3			3
Compressed wood cuttings 200 mm	0.05-0.	4	1	1	1	1	1	1		1	1(2)
Porous fibreboard, unimpregnated, 200 mm	0.05	1	3	2	2	1	1	1			2
Wood wool slabs, 300 mm	0.08	2	3	3	2	1	1	2	1		n(1)
Cellulose fibre, loose, 170 mm	0.045	1	1	1	1	2	1	3	=	1	2
Cellulose fibre, matting, 150 mm	0.04	1	2		2	1	1	3		(T).	2
Flaxen matting, 150 mm	0.04	1	1		1	1	1	1			1
Slabs of peat, 150 mm	0.04	1	2		1	1	1	1			1
Straw bound together with clay, straw >100 kg/m³, 550 mm	0.12	1	1		1	1	1	1		1	1
Woollen matting, 150 mm	0.04	1	1		1	1	1	1(3))	1970 - C. 19	-

BRE The Green Guide

Straw bale (A) versus Expanded Polystyrene insulation (A+)

(BRE Global 2012)

Element	Straw bale used as insulation	Element	Expanded polystyrene (EPS) -
Element Number	815320029	Element Number	815320025
Summary Rating	A	Summary Rating	A+
Climate Change	A+	Climate Change	В
Water Extraction	A+	Water Extraction	A+
Mineral Resource Extraction	A+	Mineral Resource Extraction	A+
Stratospheric Ozone Depletion	A	Stratospheric Ozone Depletion	A
Human Toxicity	с	Human Toxicity	A+
Ecotoxicity to Freshwater	E	Ecotoxicity to Freshwater	A+
Nuclear Waste (h	Contraction of the local division of the loc	1000 0000	
Ecotoxicity to Lar	CDD	The Alliance	
Waste Disposal	NKP	for Sustainable	
Fossil Fuel Deple		Building Product	e .
Eutrophication		building Hodoci	2
Photochemical O			
Acidification	в	Acidification	В
Kg of CO2 eq. (60 years)	-53.0	Kg of CO2 eq. (60 years)	12.0

Pat Borer AECB 2012 "If everyone does a little, we'll achieve only a little" David MacKay: Sustainability without the hot air.

For example, the choice of thermal insulation (Harris & Borer 2005)

SOURCES OF INSULATION		4											
MATERIAL	CONDUC		V/mK)					K	pette	r insi	JIATIC	DN	
	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.07	0.1	0.11	0.12	0.13
ORGANIC RENEWABLE			HEMP		Fibre bat	s & rolls							
Derived from			SHEEPSW	00L	Fibre bat	s & rolls							
natural vegetation			FLAX		Fibre bat	s & rolls							
Renewable sources	_		CELLULO	SE	Loose fill								
Reclaimable upon demolition	┛╼╶			COR	(is, granule						
Rottable	material			EXPAND	<mark>ed Rubber</mark>		Pipe insul-	ation, flex	cible slabs				
	▲ 은 _			WOOD P	IBRE	Insulation	<u>n board, sh</u>	eathing					
	S					H	emp-lime	Rigid in-s	itu or bloc	ks			
									WOODW	DOL SLAB	S	Slabs & l	poards
	nign												
INORGANIC	<u>_</u> ∵≘`_	AEROGEL	Mineral f	oam - ins	ulating pla								
			AND DEPENDENT.	CLOUDICA.	<u> </u>			100					
	×		MINERAL	FIBRES	Fibre baf	s & rolls &	loose fill -	10 C					
Derived from	- pe		MINERAL		Fibre baf		loose fill - Loose fill,	10 C			ite, vermi	culite	
Derived from naturally ocurring minerals			MINERAL			\$		lightweig			ite, vermi	culite	
			MINERAL		GRANULE	\$	Loose fill,	lightweig labs		ates. Peri		culite	
naturally ocurring minerals	more b		MINERAL		GRANULE	\$	Loose fill, Blocks & s	lightweig labs	ht aggreg	ates. Peri			Blocks
naturally ocurring minerals			MINERAL		GRANULE	\$	Loose fill, Blocks & s	lightweig labs	ht aggreg	ates. Peri	oor fill		Blocks
naturally ocurring minerals		POLYISO		MINERAI	GRANULE	S GLASS	Loose fill, Blocks & s <mark>CLAY BEA</mark>	lightweig labs	ht aggreg	ates. Peri	oor fill		Blocks
naturally ocurring minerals Non-renewable but plentiful			CYANURA	MINERAI	FOAMED	S GLASS m boards	Loose fill, Blocks & s CLAY BEA	lightweig labs	ht aggreg	ates. Peri	oor fill		Blocks
naturally ocurring minerals Non-renewable but plentiful FOSSIL ORGANIC		POLYISOC	CYANURA	MINERAI Te	GRANULE FOAMED	s GLASS m boards m boards	Loose fill, Blocks & s CLAY BEA	lightweig labs DS	ht aggreg Fired clay	ates. Peri	oor fill		Blocks
naturally ocurring minerals Non-renewable but plentiful FOSSIL ORGANIC Derived from		POLYISOC	CYANURA	MINERAL TE D EXPAND	Rigid foa Rigid foa Rigid foa	s GLASS m boards m boards YRENE	Loose fill, Blocks & s CLAY BEA	lightweig labs DS n boards	ht aggreg Fired clay	ates. Peri	oor fill		Blocks

MODERNER LEMBAU (MODERN EARTH BUILDING) CONFERENCE 2002, BERLIN •Obsession with earth building – no holistic view of

construction

•For example, Martin Rauch's studio home has external rammed earth walls. When asked, he said "Well it just gets through the Building Regs"!

A short history of building – according to Peter Harper of CAT Pre-modern construction: all abundant mineral and renewable materials Increasing use of industrial materials, understood as a natural, desirable and inevitable progression Today's buildings: >80% concrete, steel, plastic, etc., with <20% green 'garnishing' CAT buildings: reverse this ratio, with >80% premodern materials and <20% 'industrial vitamins' (Harper, 2011)

WISE 2010

Our attempt to meet Vitruvius' requirements of: "Commodity": Low energy, good daylighting & ventilation, etc. "Firmness": Robust green constructions, benign materials and "Delight"

(not) the end

