

Learning from Loudoun Road

Irene Craik
Director, Levitt Bernstein

Gareth Jones

Development Director,

Origin Housing

Levitt Bernstein People.Design

Loudoun Road

- Client: Origin Housing
- London Borough of Camden
- Contractor: Durkan Ltd

Location – South Hampstead, NW8

- 42 apartments
- Mix of 1 bed up to 4 bed flats
- Affordable rent, shared ownership and private sale
- 86% affordable homes
- Completed 2013
- High client aspirations for environmental performance

Sustainability targets

- To limit use of 'bolt-on' renewable energy sources
- Fabric first approach
- Passivhaus air tightness and insulation levels
- Code for Sustainable Homes Level 4
- Reduction of energy use over Part L 2010
- Avoidance of overheating

Other targets

- Providing a learning base to inform future projects
- Simple controls and technology easy to understand
- Avoid legacy issues future residents also understand how to use the scheme

Issues presented

- We didn't start early enough. Original building designed and Passivhaus retrospectively applied
- Applying Passivhaus to eight storey block of flats.
- Few contractors experienced in building to Passivhaus standards. At best keen to learn more and commit to working on project to be able to acquire expertise.
- Conflict with traditional construction methods/ site staff.
 Durkan introduced expert from Holland to educate on building detail.— not always on same plan/page.
- Training residents to live in a building with passive heating conditions.

Outcomes

- Hugely popular building in great location winner of Best Small Development Evening Standard awards 2013
- Met key Passivhaus performance standards
- More expensive to build (10-15% more) without necessarily returning income (5% value enhancement?)
- Contractors continue to perceive risk in meeting Passivhaus standards. Build costs have increased, clients more price sensitive and reduced emphasis on regulation for higher environmental standards.
- Still issues on maintaining legacy of scheme for new residents

Resident Attitudes

- Tried to identify occupiers who were willing to work with building operating instructions to get best out of building
- Major effort on inductions of new residents differing levels of interest amongst residents and management staff
- Tenants instructional DVD issued on handover and available to issue to future tenants.
- Very different commitment levels between residents to adapt to passive living

Sustainability targets

- To limit use of 'bolt-on' renewable energy sources
- Fabric first approach
- Passivhaus air tightness and insulation levels
- Code for Sustainable Homes Level 4
- Reduction of energy use over Part L 2010
- Avoidance of overheating

Sustainability achievements

Loudoun Road

near Passivhaus

1 High fabric efficiency

U-values as-built: walls - 0.1-0.15 W/m²,K floor - 0.15 W/m²,K roof - 0.15 W/m²,K windows - 0.87 W/m²,K doors - 0.9 W/m²,K

(2) High air tightness

As built: air permeability - 0.65-1.87 m³/h.m² @50Pa air change rate - 0.57-0.59 h⁻¹ @50Pa

3 Natural ventilation and MVHR

(4) Solar shading

horizontal brise soleil over exposed south facing windows, vertical shading on the west.

5 Daylight maximised

with average daylight factors of ≥2% in kitchens and ≥1.5% living, dining and home office areas. 6 Centralised gas fired boilers

supplying heating and hot water to dwellings.

(7) Solar thermal array

providing centralised system with hot water from a renewable source.

Biodiverse roof
 increasing local ecology

9 Acoustic insulation

insulating dwellings 5dB beyond Building Regulation requirements.

(10) Low heating demand

69% of dwellings measured in use have a heating demand of ≤15 kWh/m².yr

Post occupancy evaluation

What we wanted to find out:

- Environmental performance, energy use
- Ease of use of heating and ventilation
- Level of comfort
- Affordability of energy

To inform future design of new homes for both Levitt Bernstein and Origin.

Post occupancy evaluation

Methodology

• Initial Origin resident satisfaction questionnaire

• Use of metred energy use data

 Winter and summer conditions

 Temperature and humidity monitoring inside and out

 5 flats monitored including south facing

Approximate location of dwellings participating in the study

Results Thermal comfort

Coolest

winter days temperature

Warmest

summer days temperature

Humidity

Average winter days - humidity

Heating demand

SAP calculation v's actual building

- On average SAP overestimated the heating demand by 0.5 kWh/m²/yr
- 69% of homes' heating demand was ≤15 kWh/m²/yr in use

Heating and hot water demand

SAP calculation v's actual building

• On average SAP overestimated the heating and hot water demand by 25 kWh/m²/yr

Environmental design

- Passivhaus targets proved a useful benchmark
- Successful comfort conditions
- Consistency of temperature internally
- Cost of energy, high service charge with communal heating

Measuring/design tools

- SAP modelling shouldn't be used as design tool
- Zero carbon are we chasing the right target, considering the Loudoun Rd carbon reductions achieved on a near Passivhaus scheme?

Carbon reductions

Average CO₂ reduction over Part L 2010

Construction

- D & B procurement
- Steep learning curve
- Use of expert on site was essential
- Brickwork cladding and Passivhaus

Construction

• Brickwork cladding and Passivhaus?

Residents

- General satisfaction with the quality of the homes
- 57% found heating controls easy to adjust
- Some residents warm enough without heating
- Low heating demand but some complaint about high bill charges for energy
- But majority of residents did not understand the heating and ventilation system!

